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Chapter 7: Acceleration and Gravity 
 
 
7.1 The Principle of Equivalence  
We saw in the special theory of relativity that the laws of physics must be the same in all inertial 
reference systems. But what is so special about an inertial reference system? The inertial reference 
frames are, in a sense, playing the same role as Newton’s absolute space. That is, absolute space has 
been abolished only to replace it by absolute inertial reference frames. Shouldn’t the laws of physics 
be the same in all coordinate systems, whether inertial or noninertial? The inertial frame should 
not be such a privileged frame. But clearly, accelerations can be easily detected, whereas constant 
velocities cannot. How can this very obvious difference be reconciled? That is, we must show that 
even all accelerated motions are relative. How can this be done? 

Let us consider the very simple case of a mass m on the floor of a rocket ship that is at rest 
in a uniform gravitational field on the surface of the earth, as depicted in figure 7.1(a). The force 
acting on the mass is its weight w, which we write as 

 
F = w = mg                                                                 (7.1) 

 

Figure 7.1  An accelerated frame of reference is equivalent to an inertial frame of reference plus 
gravity. 

 
Let us now consider the case of the same rocket ship in interstellar space far removed from 

all gravitational fields. Let the rocket ship now accelerate upward, as in figure 7.1(b), with an 
acceleration a that is numerically equal to the acceleration due to gravity g, that is, a = g = 9.80 
m/s2. The mass m that is sitting on the floor of the rocket now experiences the force, given by 
Newton’s second law as 

F = ma = mg = w                                                           (7.2) 
 

That is, the mass m sitting on the floor of the accelerated rocket experiences the same force as the 
mass m sitting on the floor of the rocket ship when it is at rest in the uniform gravitational field of 
the earth. Therefore, there seems to be some relation between accelerations and gravity. 

Let us experiment a little further in the rocket ship at rest by holding a book out in front of 
us and then dropping it, as in figure 7.1(c). The book falls to the floor and if we measured the 
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acceleration we would, of course, find it to be the acceleration due to gravity, g = 9.80 m/s2. Now let 
us take the same book in the accelerated rocket ship and again drop it, as in figure 7.1(d). An 
inertial observer outside the rocket would see the book stay in one place but would see the floor 
accelerating upward toward the book at the rate of a = 9.80 m/s2. The astronaut in the accelerated 
rocket ship sees the book fall to the floor with the acceleration of 9.80 m/s2 just as the astronaut at 
rest on the earth observed. 

The astronaut in the rocket at rest on the earth now throws the book across the room of the 
rocket ship. He observes that the book follows the familiar parabolic trajectory of the projectile that 
we studied in our College Physics course and that is again shown in figure 7.1(e). Similarly, the 
astronaut in the accelerated rocket also throws the book across the room. An outside inertial 
observer would observe the book moving across the room in a straight line and would also see the 
floor accelerating upward toward the book. The accelerated astronaut would simply see the book 
following the familiar parabolic trajectory it followed on earth, figure 7.1(f). 

Hence, the same results are obtained in the accelerated rocket ship as are found in the 
rocket ship at rest in the gravitational field of the earth. Thus, the effects of gravity can be either 
created or eliminated by the proper choice of coordinate systems. Our experimental considerations 
suggest that the accelerated frame of reference is equivalent to an inertial frame of reference in 
which gravity is present. Einstein, thus found a way to make accelerations relative. He stated his 
results in what he called the equivalence principle. Calling the inertial system containing gravity 
the K system and the accelerated frame of reference the K’ system, Einstein said, “we assume that 
we may just as well regard the system K as being in a space free from gravitational field if we then 
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it 
impossible for us to speak of the absolute acceleration of the system, just as the usual (special) 
theory of relativity forbids us to talk of the absolute velocity of a system… But this view of ours will 
not have any deeper significance unless the systems K and K’ are equivalent with respect to all 
physical processes, that is, unless the laws of nature with respect to K are in entire agreement with 
those with respect to K’”1

As a final example of the equivalence of a gravitational field and an acceleration let us 
consider an observer in a closed room, such as a nonrotating space station in interstellar space, far 
removed from all gravitating matter. This space station is truly an inertial coordinate system. Let 

 

Einstein’s principle of equivalence is stated as: on a local scale the physical effects of a 
gravitational field are indistinguishable from the physical effects of an accelerated coordinate 
system. 

The equivalence of the gravitational field and acceleration “fields” also accounts for the 
observation that all objects, regardless of their size, fall at the same rate in a gravitational field. If 
we write mg for the mass that experiences the gravitational force in equation 7.1 and figure 7.1(a), 
then 

  F = w = mgg 
 

And if we write mi for the inertial mass that resists the motion of the rocket in figure 7.1(b) and 
equation 7.2, then 

 F = mia = mig 
 

Since we have already seen that the two forces are equal, by the equivalence principle, it follows 
that 

 mg = mi                                                                                                   (7.3) 
 

That is, the gravitational mass is in fact equal to the inertial mass. Thus, the equivalence principle 
implies the equality of inertial and gravitational mass and this is the reason why all objects of any 
size fall at the same rate in a gravitational field. 

                                                   
1“On the Influence of Gravitation on the Propagation of Light,’’ from A. Einstein, Annalen der 
Physik 35, 1911, in The Principle of Relativity, Dover Publishing Co. 
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the observer place a book in front of him and then release it, as shown in figure 7.2(a). Since there 
are no forces present, not even gravity, the book stays suspended in space, at rest, exactly where 
the observer placed it. If the observer then took the book and threw it across the room, he would 
observe the book moving in a straight line at constant velocity, as shown in figure 7.2(b). 

Let us now consider an elevator on earth where the supporting cables have broken and the 
elevator goes into free-fall. An observer inside the freely falling elevator places a book in front of 
himself and then releases it. The book appears to that freely falling observer to be at rest exactly 
where the observer placed it, figure 7.2(c). (Of course, an observer outside the freely falling elevator 
would observe both the man and the book in free-fall but with no relative motion with respect to 
each other.) If the freely falling observer now takes the book and throws it across the elevator room 
he would observe that the book travels in a straight line at constant velocity, figure 7.2(d). 

Because an inertial frame is defined by 
Newton’s first law as a frame in which a body at rest, 
remains at rest, and a body in motion at some constant 
velocity continues in motion at that same constant 
velocity, we must conclude from the illustration of 
figure 7.2 that the freely falling frame of reference acts 
exactly as an inertial coordinate system to anyone 
inside of it. Thus, the acceleration due to gravity has 
been transformed away by accelerating the coordinate 
system by the same amount as the acceleration due to 
gravity. If the elevator were completely closed, the 
observer could not tell whether he was in a freely 
falling elevator or in a space station in interstellar 
space. 

The equivalence principle allows us to treat an 
accelerated frame of reference as equivalent to an 
inertial frame of reference with gravity present, figure 
7.1, or to consider an inertial frame as equivalent to an 
accelerated frame in which gravity is absent, figure 
7.2. By placing all frames of reference on the same 
footing, Einstein was then able to postulate the 
general theory of relativity, namely, the laws of 
physics are the same in all frames of reference. 

From his general theory of relativity, Einstein 
was quick to see its relation to gravitation when he   

 
Figure 7.2  A freely falling frame of reference is  

locally the same as an inertial frame of reference. 
 

said, “It will be seen from these reflections that in pursuing the General Theory of Relativity we shall 
be led to a theory of gravitation, since we are able to produce a gravitational field merely by 
changing the system of coordinates. It will also be obvious that the principle of the constancy 
of the velocity of light in vacuo must be modified.” 2

Although the general theory was developed by Einstein to cover the cases of accelerated 
reference frames, it soon became obvious to him that the general theory had something quite 
significant to say about gravitation. Since the world line of an accelerated particle in spacetime is 
curved, then by the principle of equivalence, a particle moving under the effect of gravity must also 
have a curved world line in spacetime. Hence, the mass that is responsible for causing the 
gravitational field, must warp spacetime to make the world lines of spacetime curved. This is 

 

                                                   
2“The Foundation of the General Theory of Relativity” from A. Einstein, Annalen der Physik 49, 
1916 in The Principle of Relativity, Dover Publishing Co.  
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sometimes expressed as, matter warps spacetime and spacetime tells matter how to move. We will 
go into the details of curved spacetime in much greater detail in the next chapter. For now let us 
look at the problem from a purely physical point of view. 

 
 

7.2 The Gravitational Red Shift 
Although the General 
Theory of Relativity 
was developed by 
Einstein to cover the 
cases of accelerated 
reference frames, it 
soon became obvious 
to him that the 
general theory had 
something quite 
significant to say 
about gravitation. Let 
us consider the two 
clocks A and B located 
at the top and bottom 
of the rocket, 
respectively, in figure 
7.3(a). The rocket is in 
interstellar space 
where we assume that 

                                    Figure 7.3 A clock in a gravitational field. 
 
all gravitational fields, if any, are effectively zero. The rocket is accelerating uniformly, as shown. 
Located in this interstellar space is a clock C, which is at rest. At the instant that the top of the 
rocket accelerates past clock C, clock A passes clock C at the speed vA. Clock A, the moving clock, 
when observed from clock C, the stationary clock, shows an elapsed time ∆tA, given in chapter 1 by 
the time dilation equation 1.64 as 

2 21 /
A

C
A

tt
v c

∆
∆ =

−
                                                             (7.4) 

 

And since 2 21 /Av c− is less than 1, then C At t∆ > ∆ , and the moving clock A runs slow compared to 
the stationary clock C. 

A few moments later, clock B passes clock C at the speed vB, as in figure 7.3(b). The speed vB 

is greater than vA because of the acceleration of the rocket. Let us read the same time interval ∆tC 

on clock C when clock B passes as we did for clock A so the two clocks can be compared. The 
difference in the time interval between the two clocks, B and C, is again given by the time dilation 
equation 1.64 as 

2 21 /
B

C
B

tt
v c

∆
∆ =

−
                                                           (7.5) 

 
Because the time interval ∆tC was set up to be the same in both equations 7.4 and 7.5, the two 
equations can be equated to give a relation between clocks A and B. Thus, 
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2 2 2 21 / 1 /
A B

A B

t t
v c v c

∆ ∆
=

− −
  

Rearranging terms, we get   
( )
( )

1/ 22 2

1/ 22 2

1 /

1 /
AA

B B

v ct
t v c

−∆
=

∆ −
 

( ) ( )1/ 2 1/ 22 2 2 21 / 1 /A
A B

B

t v c v c
t

−∆
= − −

∆
                                            (7.6) 

 
But the two terms on the right-hand side of equation 7.6 can be expanded by the binomial theorem, 
equation 1.33, as 

(1 − x)n = 1 − nx + n(n − 1)x2 − n(n − 1)(n − 2)x3

                                                                                  2!                      3!    
  + …                       (1.33) 

 
This is a valid series expansion for (1 − x)n as long as x is less than 1. In this particular case, 
 

x = v2 /c2       
 
which is much less than 1. In fact, since x is very small, it is possible to simplify the binomial 
theorem to 

(1 − x)n = 1 − nx                                                          (1.34) 
Hence, 

( )
2 21/ 22 2
2 2

11 / 1 1
2 2

A A
A

v vv c
c c

 − = − = − 
 

 

and 

( )
2 21/ 22 2
2 2

11 / 1 1
2 2

B B
B

v vv c
c c

− − − = − = + 
 

 

 
where again the assumption is made that v is small enough compared to c, to allow us to neglect the 
terms x2 and higher in the expansion. Thus, equation 7.6 becomes 
 

2 2

2 21 1
2 2

A A B

B

t v v
t c c

  ∆
= − +  

∆   
 

2 2 2 2

2 2 4
11
42 2

B A B Av v v v
c c c

= + − −  

 
The last term is set equal to zero on the same assumption that the speeds v are much less than c. 
Finally, rearranging terms, 

2 2

2
11

2 2
A B A

B

t v v
t c

 ∆
= + − 

∆  
                                                       (7.7) 

 
But by Einstein’s principle of equivalence, we can equally well say that the rocket is at rest 

in the gravitational field of the earth, whereas the clock C is accelerating toward the earth in free-
fall. When the clock C passes clock A it has the instantaneous velocity vA, figure 7.3(c), and when it 
passes clock B it has the instantaneous velocity vB, figure 7.3(b). We can obtain the velocities vA and 
vB by the law of conservation of energy, that is, 
 

 1 
                                                 2 

 mv2 + PE = E0 = Constant = Total energy                                    (7.8) 
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The total energy per unit mass, found by dividing equation 7.8 by m, is 
 

 v2 + PE = E0  
                                                                        2      m     m    
 
The conservation of energy per unit mass when clock C is next to clock A, obtained with the aid of 
figure 7.4, is 

vA2 + mghA = E0  
                                                                     2         m       m 
or 

         vA2 + ghA = E0

 

                                                                  (7.9) 
                                                                    2                m 

Similarly, when the clock C is next to clock B, the 
conservation of energy per unit mass becomes 
 

vB2 + ghB = E0
                                    2                m 

                        (7.10) 

 
Subtracting equation 7.9 from equation 7.10, gives 
 

vB2 + ghB − vA2 − ghA = E0 − E0
                   2                2                m     m   

 = 0 

Hence, 
vB2 − vA

                          2       2 
2 = ghA − ghB = gh               (7.11) 

 
                                                                                           Figure 7.4 Freely falling clock C. 

 
where h is the distance between A and B, and gh is the gravitational potential energy per unit 
mass, which is sometimes called the gravitational potential. Substituting equation 7.11 back into 
equation 7.7, gives 

∆tA   = 1 + gh
                                                                           ∆tB          c2 

                                                                                                  (7.12) 

 
For a clearer interpretation of equation 7.12, let us change the notation slightly. Because clock B is 
closer to the surface of the earth where there is a stronger gravitational field than there is at a 
height h above the surface where the gravitational field is weaker, we will let  
 

∆tB = ∆tg 
and 

∆tA = ∆tf 
 

where ∆tg is the elapsed time on a clock in a strong gravitational field and ∆tf is the elapsed time on 
a clock in a weaker gravitational field. If we are far enough away from the gravitational mass, we 
can say that ∆tf is the elapsed time in a gravitational-field-free space. With this new notation 
equation 7.12 becomes 

∆tf   = 1 + gh
                                                                              ∆tg          c2 

                                                                                               (7.13) 

or 

21f g
ght t
c

 ∆ = ∆ + 
 

                                                         (7.14) 
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Since (1 + gh/c2) > 0, the elapsed time on the clock in the gravitational-field-free space ∆tf is greater 
than the elapsed time on a clock in a gravitational field ∆tg. Thus, the time elapsed on a clock in 
a gravitational field is less than the time elapsed on a clock in a gravity-free space. Hence, 
a clock in a gravitational field runs slower than a clock in a field-free space.  

Thus, equation 7.14 gives the slowing down of a clock in a gravitational field. Compare this to 
equation 2.24, the time dilation formula, which shows the slowing down of a moving clock.  

 
0
2 21 /

tt
v c

∆
∆ =

−
                                                            (2.24) 

 
Equation 2.24 says that a clock on earth reads a longer time interval ∆t than the clock at rest in the 
moving rocket ship ∆t0. Or as is sometimes said, moving clocks slow down. Thus, if the moving clock 
slows down, a smaller time duration is indicated on the moving clock than on a stationary clock.  

 
Example 7.1 

 
A clock in a gravitational field. A clock in a gravitational field on the earth ticks off a time interval 
of 10.0 hr. What time would elapse at a height of 1,000,000 km above the surface of earth. 

Solution
 

The time elapsed in the gravitational free area is found from equation 7.14 as 
 

21f g
ght t
c

 ∆ = ∆ + 
 

 

( )
2 9

28

(9.80 m/s )(1.00 10  m 10.0 hr 1
3.00 10  m/s

ft
 × ∆ = +
  × 

 

∆tf = 10.000000109 hr 
  

The time in the gravity free space is greater than the time elapsed in the gravitational field area. 
But as you can see, the difference is still very small. 
 

To go to this Interactive Example click on this sentence. 

We can find a further effect of the slowing down of a clock in a gravitational field by placing 
an excited atom in a gravitational field, and then observing a spectral line from that atom far away 
from the gravitational field. The speed of the light from that spectral line is, of course, given by 
 

c = λν =  λ 
           T 

                                                                (7.15) 

 
where λ is the wavelength of the spectral line, ν is its frequency, and T is the period or time interval 
associated with that frequency. Hence, if the time interval ∆t = T changes, then the wavelength of 
that light must also change. Solving for the period or time interval from equation 7.15, we get 
 

T =  λ 
      c  

                                                                   (7.16) 

 

 

http://www.farmingdale.edu/faculty/peter-nolan/pdf/relativity/Ch07Ex7.1Rel.xls
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Substituting T from 7.16 for ∆t in equation 7.13, we get  
 

21f g
ghT T
c

 = + 
 

                                                           (7.17) 

21f g gh
c c c
λ λ  = + 

 
 

21f g
gh
c

λ λ  = + 
 

                                                            (7.18) 

 
where λg is the wavelength of the emitted spectral line in the gravitational field and λf is the 
wavelength of the observed spectral line in gravity-free space, or at least farther from where the 
atom is located in the gravitational field. Because the term (1 + gh/c2) is a positive number, it 
follows that 

λf > λg                                                                  (7.19) 
 

That is, the wavelength observed in the gravity-free space is greater than the wavelength emitted 
from the atom in the gravitational field. Recall from College Physics that the visible portion of the 
electromagnetic spectrum runs from violet light at around 380.0 nm to red light at 720.0 nm. Thus, 
red light is associated with longer wavelengths. Hence, since λf > λg, the wavelength of the spectral 
line increases toward the red end of the spectrum, and the entire process of the slowing down of 
clocks in a gravitational field is referred to as the gravitational red shift. 

A similar analysis in terms of frequency can be obtained from equation 7.14 as,  
 

21f g
ghT T
c

 = + 
 

                                                      (7.14) 

and since 
1T
ν

=                                                                   (7.20) 

equation 7.17 becomes        

   
ν ν

 = + 
 2

1 1 1
f g

gh
c

                                                        (7.21) 

Solving for νf gives 
1

2

2

1
1

g
f g

gh
gh c
c

ν
ν ν

−
 = = +    + 

 

                                             (7.22) 

Using the binomial theorem  
1

2 21 1gh gh
c c

−
   + = −   
   

                                                    (7.23) 

 
Substituting equation 7.23 into equation 7.23 gives 
 

21f g
gh
c

ν ν  = − 
 

                                                          (7.24) 
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Where now the frequency observed in the gravitational-free space is less than the frequency emitted 

in the gravitational field because the term 21 gh
c

 − 
 

  is less than one. The change in frequency per 

unit frequency emitted, found from equation 7.24, is 
 

νf − νg = − gh
              c2 

νg  

νg − νf = gh
                                                                                    νg        c2  

   

ν
ν
∆

= 2
g

gh
c

                                                                (7.25) 

  
The gravitational red shift was confirmed on the earth by an experiment by R. V. Pound and G. A. 
Rebka at Harvard University in 1959 using a technique called the Mossbauer effect. Gamma rays 
were emitted from radioactive cobalt in the basement of the Jefferson Physical Laboratory at 
Harvard University. These gamma rays traveled 22.5 m, through holes in the floors, up to the top 
floor. The difference between the emitted and absorbed frequency of the gamma ray was found to 
agree with equation 7.25. 
 

Example 7.2 
Gravitational frequency shift. Find the change in frequency per unit frequency for a γ-ray traveling 
from the basement, where there is a large gravitational field, to the roof of the building, which is 
22.5 m higher, where the gravitational field is weaker. 

The change in frequency per unit frequency, found from equation 7.25, is 
 

2
g

gh
c

ν
ν
∆

=  

( )( )
( )

2

28

9.80 m/s 22.5 m

3.00 10  m/s
=

×
 

= 2.45  10−15 

 
As you can see, the change in frequency per unit frequency is very small. 
 

To go to this Interactive Example click on this sentence. 

 
The experiment was repeated by Pound and J. L. Snider in 1965, with another confirmation. 

Since then the experiment has been repeated many times, giving an accuracy to the gravitational 
red shift to within 1%. 

Further confirmation of the gravitational red shift came from an experiment by Joseph 
Hafele and Richard Keating. Carrying four atomic clocks, previously synchronized with a reference 
clock in Washington, D.C., Hafele and Keating flew around the world in 1971. On their return they 
compared their airborne clocks to the clock on the ground and found the time differences associated 
with the time dilation effect and the gravitational effect exactly as predicted. Further tests with 
atomic clocks in airplanes and rockets have added to the confirmation of the gravitational red shift. 

Solution
 

 

http://www.farmingdale.edu/faculty/peter-nolan/pdf/relativity/Ch07Ex7.2Rel.xls
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7.3  The Gravitational Red Shift by the Theory of Quanta 
The effect of acceleration and gravitation on the time recorded on a clock was derived in the last 
section by observing how a clock slows down in a gravitational field.  The effect is of course known 
as the gravitational red shift. A remarkably simple derivation of this red shift can also be obtained 
by treating light as a particle, a photon, in a gravitational field. 

Let an atom at the surface of the earth emit a photon of light of frequency νg. As you recall 
from your course in Modern Physics, a photon of light has the energy E = hν, where h is Planck’s 
constant = (6.625  10−34 J s) and ν is the frequency of the light associated with the photon. Let this 
particular photon have the energy  

Eg = hνg                                                                (7.26) 
 

The subscript g is to remind us that this is a photon in the gravitational field. Let us assume that 
the light source was pointing upward so that the photon travels upward against the gravitational 
field of the earth until it arrives at a height y above the surface, as shown in figure 7.5. (We have 
used y for the height instead of h, as used previously, so as not to confuse the height with Planck’s 
constant h.) As the photon rises it must do work against the gravitational field. When the photon 
arrives at the height y, its energy Ef must be diminished by the work it had to do to get there. Thus 
 

Ef = Eg − W                                                               (7.27) 
 

Because the gravitational field is weaker at the height y 
than at the surface, the subscript f has been used on E to 
indicate that this is the energy in the weaker field or 
even in a field-free space. The work done by the photon 
in climbing to the height y is the same as the potential 
energy of the photon at the height y. Therefore, 

                                                                                                             
W = PE = mgy                          (7.28) 

 
Substituting equation 7.28 and the values of the energies 
back into equation 7.27, gives 

 
Figure 7.5  A photon in a gravitational field. 

 
hνf = hνg − mgy                                                                 (7.29) 

 
But the mass of the emitted photon is 

m =  Eg  = 
                                                                               c2      c2 

hνg 

                    
Placing this value of the mass back into equation 7.29, gives 
 

hνf = hνg − hνg

              c2 
  gy 

or 

21f g
gy
c

ν ν  = − 
 

                                                          (7.30) 

 
Equation 7.30 says that the frequency of a photon associated with a spectral line that is observed 
away from the gravitational field is less than the frequency of the spectral line emitted by the atom 
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in the gravitational field itself. Since the frequency ν is related to the wavelength λ by c = λν, the 
observed wavelength in the field-free space λf is longer than the wavelength emitted by the atom in 
the gravitational field λg. Therefore, the observed wavelength is shifted toward the red end of the 
spectrum. Note the equation 7.30 is the same as equation 7.24 that we derived in the last section 
from a different point of view. The slowing down of a clock in a gravitational field follows directly 
from equation (7.30) by noting that the frequency ν is related to the period of time T by ν = 1/T. 
Hence 

2
1 1 1

f g

gy
T T c

 = − 
 

 

 
Tf =       Tg     

             1 − gy/c2 
  

    
1

21f g
gyT T
c

−
 = − 
 

 

But by the binomial theorem, 
1

2 21 1gy gy
c c

−
 − = + 
 

 

Thus,   

                  21f g
gyT T
c

 = + 
 

                                                           (7.31) 

 
Equation 7.31 is identical to equation 7.17. Finally calling the period of time T an elapsed time, ∆t, 
we have 

21f g
gyt t
c

 ∆ = ∆ + 
 

                                                         (7.32) 

 
which is identical to equation 7.14, which shows the slowing down of a clock in a gravitational field. 

We can also show that the slowing of a clock in a gravitational field is identical to the 
slowing down of a clock by the Lorentz transformation. Consider the term gy/c2 in equations 7.31 or 
7.32. From the law of conservation of energy we have  

 
PE = KE 

21
2mgy mv=  

and hence  
2 

2
vgy =  

Replacing this in equation 7.32 gives  
2

1
2 21f g
vt t
c

 
∆ = ∆ + 

 
                                                     (7.33) 

Using the binomial theorem in reverse 
      1 − nx = (1 − x)n 

with x = v2/c2 and n = −1/2, we get 
 

1/ 22 2 2

2 2 2 2 2

1 1 11 1 1
2 2 1 /

v v v
c c c v c

−
      + = − − = − =     

  −     
                             (7.34) 

 
Replacing this value in equation 7.32 we get  
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2 21 /
g

f

t
t

v c

∆
∆ =

−
                                                             (7.35) 

 
But the time elapsed on the clock at rest in the gravitational field, ∆tg, is the same as the time 
elapsed ∆to on a clock at rest in the moving coordinate system and ∆tf the time elapsed on the clock 
in the gravity free space is the same as the time elapsed ∆t on the moving coordinate system.  Hence 
equation 7.35 becomes 

0
2 21 /

tt
v c

∆
∆ =

−
                                                           (7.36) 

 
But this is exactly the Lorentz transformation equation for time dilation. This is very significant 
here, because it is derived on the basis of the gravitational red shift by the theory of quanta and not 
on inertial motion, yet the results are identically the same.  

Before leaving this section we should point out that for the general case, the value for the 
acceleration due to gravity g that we have been using in all these equations is not a constant but 
varies with the mass of the main object and the distance that the second object is located with 
respect to the main object. Recall that the acceleration due to gravity comes from Newton’s second 
law  

F = ma = mg 
and Newton’s law of universal gravitation  

2
eGm mF

r
=  

 
where me is the mass of the earth, and r is the distance from the center of the earth to the location 
of the second mass. Equating the two values of F gives   
 

2
eGm mmg

r
=  

 
Therefore the acceleration due to gravity is determined from  
 

2
eGmg

r
=                                                                 (7.37) 

 
So for any particular problem dealing with time dilation and gravitational acceleration, you can 
determine g by equation 7.37 if necessary.  
 
 
7.4 An Accelerated Clock and the Lorentz Transformation 
Equations 
An extremely interesting consequence of the gravitational red shift can be formulated by invoking 
Einstein’s principle of equivalence discussed in at the beginning of this chapter. Calling the inertial 
system containing gravity the K system and the accelerated frame of reference the K' system, 
Einstein stated, “we assume that we may just as well regard the system K as being in a space free 
from a gravitational field if we then regard K as uniformly accelerated.” Einstein’s principle of 
equivalence was thus stated as: on a local scale the physical effects of a gravitational field are 
indistinguishable from the physical effects of an accelerated coordinate system. “Hence the systems 
K and K' are equivalent with respect to all physical processes, that is, the laws of nature with 
respect to K are in entire agreement with those with respect to K'.” Einstein then postulated his 
theory of general relativity, as: The laws of physics are the same in all frames of reference. 
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Since a clock slows down in a gravitational field, equation 7.32, using the equivalence 
principle, an accelerated clock should also slow down. Replacing the acceleration due to gravity g by 
the acceleration of the clock a, equation 7.32 becomes 

 

21f a
ayt t
c

 ∆ = ∆ + 
 

                                                         (7.38) 

 
Note that the subscript g on ∆tg in equation 7.32 has now been replaced by the subscript a, giving 
∆ta, to indicate that this is the time elapsed on the accelerated clock. Notice from equation 7.38 that 
 

  ∆tf > ∆ta  
 

indicating that time slows down on the accelerated clock. That is, an accelerated clock runs more 
slowly than a clock at rest. In chapter 1 we saw, using the Lorentz transformation equations, that a 
clock at rest in a moving coordinate system slows down, and called the result the Lorentz time 
dilation. However, nothing was said at that time to show how the coordinate system attained its 
velocity. Except for zero velocity, all bodies or reference systems must be accelerated to attain a 
velocity. Thus, there should be a relation between the Lorentz time dilation and the slowing down of 
an accelerated clock. Let us change our notation slightly and call ∆tf the time ∆t in a stationary 
coordinate system and ∆ta the time interval on a clock that is at rest in a coordinate system that is 
accelerating to the velocity v. Assuming that the acceleration is constant, we can use the kinematic 
equation 

v2 = v02 + 2ay 
 

Further assuming that the initial velocity v0 is equal to zero and solving for the quantity ay we 
obtain 

ay =  v2 

            2 
                                                               (7.39) 

 
Substituting equation 7.39 into equation 7.38, yields 
 

2

21
2a
vt t
c

 
∆ = ∆ + 

 
                                                     (7.40) 

Using the binomial theorem in reverse 
      1 − nx = (1 − x)n 

with x = v2/c2 and n = −1/2, we get 
 

1/ 22 2 2

2 2 2 2 2

1 11 1 1
22 1 /

v v v
c c c v c

−
      + = − − = − =     

  −     
                             (7.41) 

Equation 7.40 becomes 

2 21 /
att

v c
∆

∆ =
−

                                                          (7.42) 

  
But this is exactly the time dilation formula, equation 2.24, found by the Lorentz transformation. 
Thus the Lorentz time dilation is a special case of the slowing down of an accelerated clock. This is a 
very important result. Therefore, it is more reasonable to take the slowing down of a clock in a 
gravitational field, and thus by the principle of equivalence, the slowing down of an accelerated 
clock as the more basic physical principle. The Lorentz transformation for time dilation can then be 
derived as a special case of a clock that is accelerated from rest to the velocity v. 
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Example 7.3 
Comparison of time dilation by Lorentz’s time dilation equation and the slowing down of an 
accelerated clock.  (a) A rocket ship is moving at a speed of 1610 km/s = 1.61  106 m/s. A clock on 
the rocket ship ticks off a time interval of 1.00 hr. Using the Lorentz time dilation equation, find the 
time elapsed on the clock on earth.  (b) To arrive at the speed of 1610 km/s, the rocket ship 
accelerates at 9.80 m/s2. How far must the rocket travel to arrive at this velocity. A clock on the 
rocket ticks off a time interval of 1.00 hr. Find the time recorded on the earth clock using the 
equation for time dilation of an accelerated clock. Compare the results of the Lorentz time dilation 
equation and the results of time dilation for an accelerated clock.   

a. The time elapsed on the clock on earth is found by the Lorentz time dilation formula equation 
2.24 as 

0
2 21 /

tt
v c

∆
∆ =

−
 

6 2 8 2

1.00 hr
1 (1.61 10  m/s) /(3.00 10  m/s)

=
− × ×

 

= 1.0000144 hr 
 

As we would expect with time dilation, this relatively large speed of 1610 km/s = 3,600,000 mph, the 
difference in the clocks is very small. That is, a difference of 0.0000144 hr = 0.051843 seconds 
between the moving clock and the stationary clock in a period of time of 1.00 hours. 

 
b. To find the difference in time using the concept of an accelerated clock we start with equation 
7.38 

21a
ayt t
c

 ∆ = ∆ + 
 

 

 
Now in order to compare the accelerated clock with the Lorentz clock we have to know the 
acceleration of the rocket that gave it its speed, and the distance the rocket moved during this 
acceleration so it could attain its speed. We can obtain this simply from the kinematic equation  
 

v2 = v02 + 2ay                                                              (7.43) 
 

We assume the rocket starts from rest so v0 =  0, and equation  7.43 becomes  
 

v2 = 2ay                                                                (7.44) 
 

Since the velocity v of the Lorentz rocket must be the same as the velocity v of the accelerated 
rocket we solve equation 7.44 for ay as  

ay = v2 /2                                                                (7.45) 
 

Now we have to pick a reasonable value for the acceleration a, and then we can solve for the 
distance the rocket has to move to acquire the velocity v. That is,  

 
y =  v2

          2a 
                                                                 (7.46) 

 

Solution
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We will assume a value of a of 9.80 m/s2. This acceleration is the same as the acceleration due to 
gravity and an astronaut could easily take it for the long time necessary for the rocket to acquire 
the velocity desired. We can change the acceleration value later to some other value if we wish. The 
distance y that the rocket must move to attain this velocity is found from equation 7.46 as  
 

( )262

2

1.61 10  m/s
2 2 9.8 m/s
vy
a

×
= =

×
 

y = 1.32  1011 m 
 
The value of ay that we need for equation 7.46 is found as 
 

ay = (9.80 m/s2)( 1.32  1011 m) = 1.30  1012 m2s2 
 
We can now determine the time ∆tf from equation 7.38 as 
 

21f a
ayt t
c

 ∆ = ∆ + 
 

 

( )
12 2 2

28

(1.30 10  m s 1.00 hr 1
3.00 10  m/s

ft
 × ∆ = +
  × 

 

∆tf = 1.0000144 hr 
 
The difference in the value of ∆t found with the Lorentz time dilation equation and the time ∆t      
found with the  accelerated clock time dilation equation  is      
Lorentz time dilation =    1.0000144E+00  hr  
Accelerated time dilation =    1.0000144E+00  hr  
And is essentially zero. Hence the accelerated time dilation is the same as the Lorentz time dilation. 
Therefore we can assume that a Lorentz clock is equivalent to a gravitational clock and an 
accelerated clock.   

 
To go to this Interactive Example click on this sentence. 

 
 

Just as the slowing down of a clock in a gravitational field can be attributed to the warping 
of spacetime by the mass, it is reasonable to assume that the slowing down of the accelerated clock 
can also be thought of as the warping of spacetime by the increased mass, due to the increase in the 
velocity of the accelerating mass. 

The Lorentz length contraction can also be derived from this model by the following 
considerations. Consider the emission of a light wave in a gravitational field. We will designate the 
wavelength of the emitted light by λg, and the period of the light by Tg. The velocity of the light 
emitted in the gravitational field is given by 

cg =  λg 

         Tg 
                                                                 (7.47) 

 
We will designate the velocity of light in a region far removed from the gravitational field as cf for 
the velocity in a field-free region. The velocity of light in the field-free region is given by 
 

cf =  λf 

     Tf 
                                                                  (7.48) 

 

http://www.farmingdale.edu/faculty/peter-nolan/pdf/relativity/Ch07Ex7.3Rel.xls
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where λf is the wavelength of light, and Tf is the period of the light as observed in the field-free 
region. If the gravitating mass is not too large, then we can make the reasonable assumption that 
the velocity of light is the same in the gravitational field region and the field-free region, that is, cg 
= cf. We can then equate equation 7.47 to equation 7.48 to obtain 
 

 λg  =  λf 
                                                                           Tg     Tf 

  

 
Solving for the wavelength of light in the field-free region, we get 
 

λf =  Tf 
 Tg 

 λg   

 
Substituting the value of Tf from equation 7.31 into this we get 

 

21g
f g

g

T gy
T c

λ λ = + 
 

 

21f g
gy
c

λ λ = + 
 

                                                           (7.49) 

 
Equation 7.49 gives the wavelength of light λf in the gravitational-field-free region. By the principle 
of equivalence, the wavelength of light emitted from an accelerated observer, accelerating with the 
constant acceleration a through a distance y is obtained from equation 7.49 as 

 

0 21 a
ay
c

λ λ = + 
 

                                                          (7.50) 

 
where λ0 is the wavelength of light that is observed in the region that is not accelerating, that is, 
the wavelength observed by an observer who is at rest. This result can be related to the velocity v 
that the accelerated observer attained during the constant acceleration by the kinematic equation 
 

v2 = v02 + 2ay 
 
Further assuming that the initial velocity v0 is equal to zero and solving for the quantity ay we 
obtain 

ay = 
       2 

 v2  

 
Substituting this result into equation 7.50 we obtain 
 

λ λ
 

= + 
 

2

0 21
2 a
v
c

                                                          (7.51) 

 
Using the binomial theorem in reverse as in equation 7.41, 
 

2

2 2 2

11
2 1 /
v
c v c

 
+ = 

− 
 

equation 7.51 becomes 

0 2 21 /
a

v c
λ

λ =
−
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Solving for λa we get 
2 2

0 1 /  a v cλ λ= −                                                          (7.52) 
 

But λ is a length, in particular λa is a length that is observed by the observer who has accelerated 
from 0 up to the velocity v and is usually referred to as L, whereas λ0 is a length that is observed by 
an observer who is at rest relative to the measurement and is usually referred to as L0. Hence, we 
can write equation 7.52 as 

2 2
0 1 /  L L v c= −                                                          (7.53) 

 
But equation 7.53 is the Lorentz contraction of special relativity. Hence, the Lorentz contraction is a 
special case of contraction of a length in a gravitational field, and by the principle of equivalence, a 
rod L0 that is accelerated to the velocity v is contracted to the length L. (That is, if a rod of length L0 
is at rest in a stationary spaceship, and the spaceship accelerates up to the velocity v, then the 
observer on the earth would observe the contracted length L.) Hence, the acceleration of the rod is 
the basic physical principle underlying the length contraction. It is physically the acceleration that 
gives the object its velocity that is used in the original Lorentz equations. 
 

Example 7.4 
Comparison of length contraction by Lorentz-Fitzgerald Contraction and the length contraction   
equation caused by an acceleration.  
a. Using the Lorentz-Fitzgerald contraction equation.  What is the length of a meter stick at rest on 
earth, when it is observed by an astronaut moving at a speed of v = 1.61  106 m/s = 3,600,000 
miles/hr.  
b. Length contraction for an accelerated rod.  To arrive at the speed of 1.61  106 m/s, the rocket 
ship accelerates at 9.80 m/s2. How far must the rocket travel to arrive at this velocity. Find the 
length contraction of the meter stick caused by this acceleration.  
c. Compare the results of the Lorentz-Fitzgerald length contraction and the accelerated length 
contraction.  

a.  The length of the meter stick is measured in the frame where it is at rest, and is called its proper 
length and is denoted by L0. The length of the meter stick as measured by the astronaut in the 
moving frame is denoted by L. The Lorentz-Fitzgerald contraction of a meter stick for a speed of 
1.61  106 m/s is found by the Lorentz equation as  
 

2

0 21 vL L
c

= −  

6 2

8 2
(1.610 10  m/s)(1.00 m) 1
(3.00 10  m/s)

×
= −

×
 

(1.00 m) 0.99997=  
= 0.9999856 m 

 
As we would expect with length contraction, this relatively large speed of 1.61  106 m/s, gives a 
very small difference in the final length.  
 
b. A meter stick is at rest on the earth. A rocket ship now accelerates away from the earth. What is 
the length contraction caused by the acceleration of the rocket ship away from the earth where the 

Solution
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rod is at rest? To find the difference in the length using the concept of an acceleration we start with 
equation 7.50 as  

0 21 a
ay
c

λ λ = + 
 

                                                            (7.50) 

 
but change the length designation from λ to L, so that equation 7.50 can be rewritten as  
 

0 21 a
ayL L
c

 = + 
 

                                                           (7.54)                   

 
Where La is the length that is observed by the accelerated observer who has accelerated from 0 up 
to the velocity v, whereas L0 is the length that is observed by an observer who is at rest on the earth 
next to the rod. For this problem the rod is at rest on the earth (L0), and the rod observed by the 
astronaut is La. Hence we have to rearrange equation 7.54 into the form  
 

0

21
a

LL
ay
c

=
 + 
 

                                                             (7.55) 

 
Now in order to solve this equation we have to know the acceleration a of the rocket that gave it its 
speed, and the distance y the rocket moved during this acceleration so it could attain its speed. We 
can obtain this simply from the kinematic equation as we did in Example 7.3 as  
 

v2 = v02 + 2ay                                                              (7.43) 
 

We assume the rocket starts from rest so v0 =  0, and equation  7.43 becomes  
 

v2 = 2ay                                                                (7.44) 
 

Since the velocity v of the Lorentz rocket must be the same as the velocity v of the accelerated 
rocket we solve equation 7.44 for ay as  

ay = v2 /2                                                                (7.45) 
 
 Now we have to pick a reasonable value for the acceleration a, and then we can solve for the 
distance the rocket has to move to acquire the velocity v. That is,  

 
y =  v2

          2a 
                                                                 (7.46) 

 
We will assume a value of a of 9.80 m/s2. This acceleration is the same as the acceleration due to 
gravity and an astronaut could easily take it for the long time necessary for the rocket to acquire 
the velocity desired. We can change the acceleration value later to some other value if we wish. The 
distance y that the rocket must move to attain this velocity is found from equation 7.46 as  
 

( )262

2

1.61 10  m/s 
2 2 9.8 m/s
vy
a

×
= =

×
 

y = 1.32  1011 m 
 
The value of ay that we need for equation 7.46 is then found as 
 

ay = (9.80 m/s2)( 1.32  1011 m) = 1.30 1012 m2s2 
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We can now determine the length Lo from equation 7.55 as 
 

      0

21
a

LL
ay
c

=
 + 
 

 

        

( )
12 2 2

28

1.00 m

(1.30 10  m s1
3.00 10  m/s

aL =
 × +
 × 

 

La = 0.9999856 m              
 
c. Hence the results obtained by the Lorentz-Fitzgerald length contraction and the accelerated 
length contraction are the same. That is, the length observed by the accelerating astronaut is the 
same length that we obtained by the Lorentz- Fitzgerald contraction.  

The important thing here to observe is that we get the same results by using the Lorentz-
Fitzgerald contraction as we do by considering a contraction as the result of gravity or an 
acceleration. 

 
To go to this Interactive Example click on this sentence. 

 
 

Thus, both the time dilation and length contraction of special relativity should be attributed 
to the warping of spacetime by the accelerating mass. 

The warping of spacetime by the accelerating mass can be likened to the Doppler effect for 
sound. Recall that if a source of a sound wave is stationary, the sound wave propagates outward in 
concentric circles. When the sound source is moving, the waves are no longer circular but tend to 
bunch up in advance of the moving source. Since light does not require a medium for propagation, 
the Doppler effect for light is very much different. However, we can speculate that the warping of 
spacetime by the accelerating mass is comparable to the bunching up of sound waves in air. In fact, 
if we return to equation 7.30, for the gravitational red shift, and again, using the principle of 
equivalence, let g = a, and dropping the subscript f, this becomes 

 

21a
ay
c

ν ν  = − 
 

                                                               (7.56) 

 
Using the kinematic equation for constant acceleration, ay = v2/2. Hence equation 7.56 becomes 
 

2

21
2a
v
c

ν ν
 

= − 
 

                                                              (7.57) 

Again using the binomial theorem 
2

2 2
21 1 /

2
v v c
c

 
− = − 

 
 

Equation 7.56 becomes 
2 21 /a v cν ν= −                                                           (7.58) 

 
Equation 7.58 is called the transverse Doppler effect. It is a strictly relativistic result and has no 
counterpart in classical physics. The frequency νa is the frequency of light emitted by a light source 
that is at rest in a coordinate system that is accelerating past a stationary observer, whereas ν is 

http://www.farmingdale.edu/faculty/peter-nolan/pdf/relativity/Ch07Ex7.4Rel.xls
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the frequency of light observed by the stationary observer. Notice that the transverse Doppler effect 
comes directly from the gravitational red shift by using the equivalence principle. Thus the 
transverse Doppler effect should be looked on as a frequency shift caused by accelerating a light 
source to the velocity v. 

It is important to notice here that this entire derivation started with the gravitational red 
shift by the theory of the quanta, then the equivalence principle was used to obtain the results for an 
accelerating system. The Lorentz time dilation and length contraction came out of this derivation as 
a special case. Thus, the Lorentz equations should be thought of as kinematic equations, whereas the 
gravitational and acceleration results should be thought of as a dynamical result. 

Time dilation and length contraction have always been thought of as only depending upon 
the velocity of the moving body and not upon its acceleration. As an example, in Wolfgang Rindler’s 
book Essential Relativity,3

 

 he quotes results of experiments at the CERN laboratory where muons 
were accelerated. He states “that accelerations up to 1019 g (!) do not contribute to the muon time 
dilation.” The only time dilation that could be found came from the Lorentz time dilation formula. 
They could not find the effect of the acceleration because they had it all the time. The Lorentz time 
dilation formula itself is a result of the acceleration. Remember, it is impossible to get a nonzero 
velocity without an acceleration. 

 
 

Summary of Basic Concepts 

                                                   
3 Springer-Verlag, New York, 1979, Revised 2nd edition, p. 44. 

Equivalence principle
On a local scale, the physical effects of a 
gravitational field are indistinguishable from 
the physical effects of an accelerated 
coordinate system. Hence, an accelerated 
frame of reference is equivalent to an inertial 
frame of reference in which gravity is present, 
and an inertial frame is equivalent to an 
accelerated frame in which gravity is absent.  
 
The general theory of relativity 
The laws of physics are the same in all frames 
of reference (note that there is no statement 
about the constancy of the velocity of light as 
in the special theory of relativity). 
 
Gravitational red shift 
Time elapsed on a clock in a gravitational 
field is less than the time elapsed on a clock 
in a gravity-free space. This effect of the 
slowing down of a clock in a gravitational 
field is manifested by observing a spectral line 
from an excited atom in a gravitational field. 
The wavelength of the spectral line of that 
atom is shifted toward the red end of the 
electromagnetic spectrum. 
  
Photon 
A small bundle of electromagnetic energy that 
acts as a particle of light. The photon has zero 

rest mass and its energy and momentum are 
determined in terms of the wavelength and 
frequency of the light wave. 
 
An Accelerated Clock and the Lorentz 
Transformation Equations  
The Lorentz time dilation is a special case of 
the slowing down of an accelerated clock. 
Therefore, it is more reasonable to take the 
slowing down of a clock in a gravitational 
field, and thus by the principle of equivalence, 
the slowing down of an accelerated clock as 
the more basic physical principle. The Lorentz 
transformation for time dilation can then be 
derived as a special case of a clock that is 
accelerated from rest to the velocity v. 

The Lorentz contraction is a special case 
of contraction of a length in a gravitational 
field, and by the principle of equivalence, a 
rod L0 that is accelerated to the velocity v is 
contracted to the length L. Hence, the 
acceleration of the rod is the basic physical 
principle underlying the length contraction. It 
is physically the acceleration that gives the 
object its velocity that is used in the original 
Lorentz equations. 
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Summary of Important Equations 

 
Slowing down of a clock in a gravitational 

field                21f g
ght t
c

 ∆ = ∆ + 
 

              (7.14) 

 
Gravitational red shift of wavelength  

                    21f g
gh
c

λ λ  = + 
 

                 (7.18) 

  
Gravitational red shift of frequency 

                       21f g
gh
c

ν ν  = − 
 

                 (7.24) 

 
Change in frequency per unit frequency 

                   2
g

gh
c

ν
ν
∆

=                       (7.25) 

 
Slowing down of a clock in a gravitationfield  

           21f g
gyT T
c

 = + 
 

                  (7.31) 

 
Slowing down of a clock in a gravitational 

field                  21f g
gyt t
c

 ∆ = ∆ + 
 

              (7.32) 

 

 
Slowing down of an accelerated clock 

               21f a
ayt t
c

 ∆ = ∆ + 
 

                (7.38) 

     
2 21 /
att

v c
∆

∆ =
−

                 (7.42) 

 
Length contraction in a gravitational field 

  21f g
gy
c

λ λ = + 
 

                (7.49) 

 
Length contraction in an acceleration  

  0 21 a
ay
c

λ λ = + 
 

                (7.50) 

  2 2
0 1 /  L L v c= −            (7.53) 

 
0

21
a

LL
ay
c

=
 + 
 

                  (7.55)

 
Questions for Chapter 7 

 
1. When light shines on a surface, is 

momentum transferred to the surface? 
2. Could photons be used to power a 

spaceship through interplanetary space? 
3. Which photon, red, green, or blue, 

carries the most (a) energy and 
(b) momentum? 

4. Ultraviolet light has a higher frequency 
than infrared light. What does this say about 
the energy of each type of light? 

*5. Why could red light be used in a 
photographic dark room when developing 
pictures, but a blue or white light could not? 
 
 

 
Problems for Chapter 7 

 
1. A photon has an energy of 5.00 eV. What 

is its frequency and wavelength? 
2. Find the mass of a photon of light of 

500.0-nm wavelength. 
3. Find the momentum of a photon of light 

of 500.0-nm wavelength. 
4. Find the wavelength of a photon whose 

energy is 500 MeV. 

5. What is the energy of a 650 nm photon? 
6. Find the energy of a photon of light of 

400.0-nm wavelength. 
7. A radio station broadcasts at 92.4 MHz. 

What is the energy of a photon of this 
electromagnetic wave? 
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7.3  The Gravitational Red Shift 
8. One twin lives on the ground floor of a 

very tall apartment building, whereas the 
second twin lives 200 ft above the ground floor. 
What is the difference in their age after 50 
years? 

9. The lifetime of a subatomic particle is 6.25 
 10−7 s on the earth’s surface. Find its lifetime 
at a height of 500 km above the earth’s surface. 

10. An atom on the surface of Jupiter (g = 
23.1 m/s2) emits a ray of light of wavelength 
528.0 nm. What wavelength would be observed 
at a height of 10,000 m above the surface of 
Jupiter? 
 
Additional Problems 

*11. Using the principle of equivalence, 
show that the difference in time between a clock 
at rest and an accelerated clock should be given 
by 

 ∆ = ∆ + 
 21R A

axt t
c

 

 
where ∆tR is the time elapsed on a clock at rest, 
∆tA is the time elapsed on the accelerated clock, 
a is the acceleration of the clock, and x is the 
distance that the clock moves during the 
acceleration. 

*12. A particle is moving in a circle of 1.00-
m radius and undergoes a centripetal 
acceleration of 9.80 m/s2. Using the results of 
problem 11, determine how many revolutions 
the particle must go through in order to show a 
10% variation in time. 

13. The pendulum of a grandfather clock 
has a period of 0.500 s on the surface of the 
earth. Find its period at an altitude of 200 km. 
Hint: Note that the change in the period is due 
to two effects. The acceleration due to gravity is 

smaller at this height even in classical physics, 
since 

g =    GM    
          (R + h)2 

 
To solve this problem, use the fact that the 
average acceleration is 
 
                            g =  

 ∆ = ∆ + 
 21f g

ght t
c

   GM     
                                   R(R + h)  
and assume that   

 

 
14. Compute the fractional change in 

frequency of a spectral line that occurs between 
atomic emission on the earth’s surface and that 
at a height of 325 km. 

 
Interactive Tutorials 

15. Properties of a photon. A photon of light 
has a wavelength λ = 420.0 nm, find (a) the 
frequency ν of the photon, (b) the energy E of 
the photon, (c) the mass m of the photon, and 
(d) the momentum p of the photon. 

16. Gravitational red shift. An atom on the 
surface of the earth emits a ray of light of 
wavelength λg = 528.0 nm, straight upward. 
(a) What wavelength λf would be observed at a 
height y = 10,000 m? (b) What frequency νf 
would be observed at this height? (c) What 
change in time would this correspond to? 
 
 

To go to these Interactive Tutorials 
click on this sentence. 

 

 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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