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Key Area: Fields 
 

 

Success Criteria 
 
1.1 I can define electric field strength. 

1.2 I can draw electric field patterns around single charges, a system of two charges and 

a uniform electric field. 

1.3 I can solve problems involving electric fields and the forces produced on charged 

particles. 

1.4 I can define electric potential. 

1.5 I can state that the energy required to move a charge between two points in an 

electric field is independent of the path taken. 

1.6 I can solve problems involving electric potential. 

1.7 I can solve problems on the motion and energy of charged particles in uniform 

electric fields. 

1.8 I know the definition of the Electron Volt (eV) and can convert between electron 

volts and joules. 

1.9 I explain the magnetic effect called ferromagnetism which occurs in certain metals. 

1.10 I can draw magnetic field line patterns. 

1.11 I can solve problems involving the magnetic induction formed around a current 

carrying wire. 

1.12 I can solve problems involving charged particles in magnetic fields in terms of their; 

mass, velocity, charge, radius of their path and the magnetic induction of the 

magnetic field. 

1.13 I can solve problems involving the forces acting on a current carrying wire in a 

magnetic field. 

1.14 I can state comparisons between nuclear, electromagnetic and gravitational forces in 

terms of relative magnitude and range. 
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1.1 I can define electric field strength and know its relationship to the 
force produced on a charged particle. 

 
Charged particles exert forces on other charged particles. 
 
 
 
 
 
 
 
 
 
A charged particle produces an electric field which occupies the surrounding space.  The 
electric field exerts a force on other charged particles. 
 
Electric field strength, E, at any point is the force applied per unit positive charge at that 
point.  Electric Field Strength is a vector quantity with units of Newtons per Coulomb (NC-1). 
or in Volts per Metre (Vm-1) 
 
 
 
 
 
 
 
 
Electric Fields around Point charges 
The relationship which gives the electric 
field produced around a point charge is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸 =
𝑄

4𝜋𝜖0𝑟2
 

Electric Field Strength 
(NC-1 or Vm-1) 

Charge of the particle 
producing the electric 
field (C). 

Distance from charge Q (m) Permittivity of 
free space (Fm-1) 

Note: Permittivity of Free Space 
𝜖0 is a constant which determines how easily the electric field can permeate a vacuum 
(free space).  The value permittivity for air is very close to 𝜖0 and so can be used for all 
calculations you will meet.   When the electric field is permeating other materials 𝜖 
usually has a much higher value. 

+ + F F 

+ - F F 

- 
 

- 
 

F F 

 

Charge producing an 
electric field. 

Force on a 
charged particle 
in the electric 
field. 
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Forces Produced by Electric Fields 
The relationship between the force produced on a charged particle in an electric field, 
charge and electric field strength is given by the relationship 
 
 
 
 
 
 
 
 
 
 
Forces - Point Charges 

Both the relationships 𝐹 = 𝑄𝐸 and E =
Q

4𝜋𝜖0𝑟2
 can be combined to give Coulomb′s Law 

Note that 𝑄 in each of these two relationships refer to different charges.  

 

 

 

 

 

 

 

 

 

 

 

Forces - Uniform Electric fields 

  
When performing calculations with uniform fields between charged plates 𝑉 = 𝐸𝑑 is usually 
used as the voltage across the plates is usually known. 
  

𝐹 = 𝑄𝐸 

Electric Field Strength 
(NC-1 or Vm-1) 

Charge on the particle in the 
electric field (C)  

Force (N) 

𝐹 =
𝑄1𝑄2

4𝜋𝜖0𝑟2
 

Electric Force (N) 

Charge of the particle 
producing the electric 
field (C). 

Distance of 𝑄1 
from 𝑄2  (m) 

Permittivity of 
free space (Fm-1) 

Charge on the particle in the 
electric field (C)  

Note 
Like Newton’s Law of 
Gravitation, Coulomb’s Law is 
an inverse square law. 

- 

+ 
F 

From the Higher Physics course 

𝐸𝑤 = 𝐹𝑑  and 𝐸𝑊 = 𝑄𝑉 

Combining these gives 

𝐹 =
𝑄𝑉

𝑑
 

Equating this to the definition of an electric 

field, 𝐹 = 𝑄𝐸 gives 

𝑄𝑉

𝑑
= 𝑄𝐸 

Which simplifies to  

𝑉 = 𝐸𝑑 
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1.2 I can draw electric field patterns around single charges, a system of 
two charges and a uniform electric field. 

 
Also see Higher Physics Particle and Waves Notes section 2.2. 
 
 

  

  

Single positive charge Single negative charge 

+ - 
Two opposite charges 

Two positive charges 

+ + 
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Parallel plates produce a 
uniform field between the 
plates.  
The curvature of the field 
lines at the edges of the 
plates is small and frequently 
not shown in diagrams. 

Parallel Charged Plates 

- - 

Two negative charges 



 

8 | P a g e  
Version 1.0 

1.3 I can solve problems involving electric fields and the forces produced 
on charged particles. 

 
Example 1 
Find the magnitude of electric field strength at the Bohr radius (5.29 × 10−11m) of a 

hydrogen atom. 

Solution 1 

𝑟 = 5.29 × 10−11m 

𝜖0 = 8.85 × 10−12Fm−1 

𝑄 = 1.6 × 10−19C 

 

 

Electromagnetism problem book pages 6 and 7, questions 1 to 7. 
 
Example 2 - Electric Dipole 
The diagram below shows two charged particles in an arrangement called an electric dipole.  
Find the electric field at point P. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 2 – Electric Dipole 
 

𝑟+ = 𝑟− = √(9.0 × 10−10)2 + (1.0 × 10−9)2 = 1.345 × 10−9m 
 
Electric field due to the positive charge 

𝐸+ =
𝑄+

4𝜋𝜖0𝑟+
2 =

5.0 × 10−10

4 × 𝜋 × 8.85 × 10−12 × (1.345 × 10−9)2
= 2.485 × 1018NC−1 

 
 
 

𝐸 =
𝑄

4𝜋𝜖0𝑟2
 

𝐸 =
1.6 × 10−19

4𝜋 × 8.85 × 10−12 × 5.29 × 10−11
 

𝐸 = 27NC−1 

+ 

- 

P 

𝑟+ 

𝑟− 

5.0 × 10−10C 

−5.0 × 10−10C 1.0 × 10−9m 

9.0 × 10−10m 

9.0 × 10−10m 



 

9 | P a g e  
Version 1.0 

Electric field due to the negative charge 

𝐸+ =
𝑄+

4𝜋𝜖0𝑟−
2

=
−5.0 × 10−10

4 × 𝜋 × 8.85 × 10−12 × (1.345 × 10−9)2
= −2.485 × 1018NC−1 

 
 
 

 

 

 

 

 

 

 

 

To find the resultant electric field first find the angle 𝜃. 

 

tan 𝜃 =
9.0 × 10−10

1.0 × 10−9
 

𝜃 = tan−1 (
9.0 × 10−10

1.0 × 10−9
) = 41.99° 

Using the cosine rule  

𝐸𝑅 = √|𝐸−|2 + |𝐸+|2 − 2|𝐸−||𝐸+| cos 2𝜃 

As  |𝐸−|2 = |𝐸+|2 = |𝐸|2  and |𝐸−||𝐸+| = |𝐸|2 

𝐸𝑅 = √2|𝐸|2 − 2|𝐸|2 cos 2𝜃 

𝐸𝑅 = |𝐸|√2(1 − cos 2𝜃) 

𝐸𝑅 = 2.485 × 1018 × √2(1 − cos(2 × 41.99)) 

𝐸𝑅 = 3.3 × 1018NC−1  vertically downward 

Electromagnetism problem book page 9, question 13. 
 
  

P 

𝑟+ 

1.0 × 10−9m 

9.0 × 10−10m 𝐸− 

𝐸+ 

𝐸𝑅 𝜃 2𝜃 
+ 

- 

P 

𝑟+ 

𝑟− 

1.0 × 10−9m 
 

9.0 × 10−10m 

𝐸− 

𝐸+ 
 

The resultant electric field 𝐸𝑅 is 
given by the vector addition of 𝐸− 
and 𝐸−. 

 

9.0 × 10−10m 

𝐸𝑅 
 

A a 

b 

B 
c

 

C 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴 

Cosine Rule 

𝑎 = √𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝐴 
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Example 3 – Coulomb’s Law 

Helium He2
4  consists of two protons and two neutrons.  Calculate the ratio, 

Electrostaic Force

Gravitational Force
, 

for the two protons when they are 10−15m apart. 
 
Solution 3 – Coulomb’s Law 
Electric Force 

𝐹𝐸 =
𝑄1𝑄2

4𝜋𝜖0𝑟2
=

1.6 × 10−19 × 1.6 × 10−19

4𝜋 × 8.85 × 10−12 × (10−15)2
= 230N 

Gravitational Force 

𝐹𝐺 =
𝐺𝑚1𝑚2

𝑟2
=

6.67 × 10−11 × 1.673 × 10−27 × 1.673 × 10−27

(10−15)2
= 1.87 × 10−34N 

𝐹𝐸

𝐹𝐺
=

230

1.87 × 10−34
= 1.2 × 1036 

Note how the electric force is much larger than the gravitational force. 
 
Example 4 – Coulomb’s Law 
Three charged objects are fixed in position.  
Each has a charge of+120𝜇C.  Calculate the 
magnitude of the force on charge 2. 

 
 

 
 
 

Solution 4 Coulomb’s Law 
Force on charge 2 due to charge 3 

𝐹23 =
𝑄2𝑄3

4𝜋𝜖0𝑟2
=

120 × 10−6 × 120 × 10−6

4𝜋 × 8.85 × 10−12 × 2.02
= 32.37N 

Force on charge 2 due to charge 1 

𝐹21 =
𝑄2𝑄3

4𝜋𝜖0𝑟2
=

120 × 10−6 × 120 × 10−6

4𝜋 × 8.85 × 10−12 × 1.02
= 129.5N 

 

Force 𝐹23 and 𝐹21 are both vectors 

𝐹𝑅 = √129.52 + 32.372 = 133N 

 
 

 
Electromagnetism problem book pages 4 to 6, questions 1 to 11; page 8 question 10 
 
  

2 3 

1 

2.0m 

1.0m 

2  

129.5N 

32.37N 

129.5N 

32.37N 

𝐹𝑅 
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Example 5 – Uniform Electric Fields 
Two charged plates 1.0cm apart have a voltage 
of 4000V placed across them. 
 
a. Find the electric field strength between 

the two plates. 
 
b. If an electron is placed between the 

plates, calculate the electric force on 
the electron. 

 
Solution Example 5 – Uniform Electric Fields. 
 
a. 𝑑 = 1.0cm = 0.01m 

𝑉 = 𝐸𝑑  ⇒    𝐸 =
𝑉

𝑑
 

𝐸 =
4000

0.01
= 4.0 × 105Vm−1 

 
b. 𝐹 = 𝑄𝐸 

 𝐹 = 1.6 × 10−19 × 4.0 × 105 

 𝐹 = 6.4 × 10−14N 

Electromagnetism problem book pages 7 to 9, questions 8, 9, 11 to 13. 
  

- 

+ 
F 
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1.4 I can define electric potential. 
 
Electric potential at a point is the work done in moving a unit positive charge 𝑄𝑡 from 
infinity to that point.  Note the similarity between this definition and the definition of 
gravitational potential. 

1.5 I can state that the energy required to move a charge between two 
points in an electric field is independent of the path taken. 

 
From the electric potential relationship, the electric potential energy of a unit charge 
depends on the distance from the charge producing the field.  The distances between the 
initial and final positions determine the energy required to move the charge.  Whether the 
charge follows path 1 or path 2 the energy change will be the same. 
  

𝑉 =
𝑄

4𝜋𝜖0𝑟
 

Electric potential (V) 
Distance (m) 

Permittivity of free 
space (Fm-1) 

 

Charge (C)  
Note 
Electric potential is a 
scalar quantity. 

𝑟 

∞ 

𝑄𝑡  𝑄𝑡  

Charge producing 
the electric field 

Final distance 

distance, r 

Initial distance 
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1.6 I can solve problems involving electric potential. 
 
Example 1 
Calculate the electric potential at point P midway 
between the two charges. 
 
 
Solution 1 

𝑟 =
1.0

2
= 0.50m 

𝑉1 =
𝑄

4𝜋𝜖0𝑟
=

100 × 10−12

4𝜋 × 8.85 × 10−12 × 0.50
= 1.80V 

𝑉2 =
𝑄

4𝜋𝜖0𝑟
=

−400 × 10−12

4𝜋 × 8.85 × 10−12 × 0.50
= −7.19V 

Potential at P 

𝑉𝑃 = 1.80 − 7.19 = −5.4V 

 
Example 2 
Three small charges are each 4.0cm from the point P.  Calculate 
the electric potential at point P.  
 
Solution 2 
𝑟 = 4.0cm = 0.04m 

𝑉1 =
𝑄

4𝜋𝜖0𝑟
=

3.0 × 10−9

4𝜋 × 8.85 × 10−12 × 0.04
= 674.4V 

𝑉2 =
𝑄

4𝜋𝜖0𝑟
=

−5.0 × 10−9

4𝜋 × 8.85 × 10−12 × 0.04
= −1124V 

𝑉3 =
𝑄

4𝜋𝜖0𝑟
=

2.0 × 10−9

4𝜋 × 8.85 × 10−12 × 0.04
= 449.6V 

Potential at P 

𝑉𝑃 = 674.4 − 1124 + 449.6 = 0V 

 

Electromagnetism problem book pages 9 to 11, questions 1 to 14. 
 

 
  

2 

1 

P 3 2.0nC 

-5.0nC 

3.0nC 

2 1 
P -400pC 100pC 

1.0m 
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1.7 I can solve problems on the motion and energy of charged particles in 
uniform electric fields. 

 
Example 1 Motion parallel to the electric field  
A particle of mass 2.5 × 10−8kg with a charge 
of −4.0 × 10−10C starts on the negative plate 
in the diagram shown.  The voltage across the 
plates is 3.0kV.  
  
a. Find the electric field strength between 

the plates. 
 
b. Find the electric force acting on the 

charged particle. 
 
c. find the speed of the mass as it strikes 

the positive plate. 
 
Solution 1 Motion parallel to the electric field 
 
a. 𝑑 = 5.0mm = 5.0 × 10−3m 
 𝑉 = 3.0kV = 3.0 × 103V 

  
 

 
 
 
b. 𝑄 = −4.0 × 10−10C 
 
 
 
 
 
c. Work done on the charged particle 𝐸𝑊 = 𝑄𝑉 

 Kinetic energy of the particle 𝐸𝑘 =
1

2
𝑚𝑣2 

 As all work done will be converted to kinetic energy 

 
1

2
𝑚𝑣2 = 𝑄𝑉 

𝑣 = √
2𝑄𝑉

𝑚
 

𝑣 = √
2 × 4.0 × 10−10 × 3.0 × 103

2.5 × 10−8
 

 𝑣 = 9.8ms−1 

- 

+ 

3.0kV 

5
.0

m
m

 

𝑉 = 𝐸𝑑  ⇒    𝐸 =
𝑉

𝑑
 

𝐸 =
3.0 × 103

5.0 × 10−3
 

𝐸 = 6.0 × 105Vm−1 

𝐹 = 𝑄𝐸   

𝐹 = −4.0 × 10−10 × 6.0 × 105 

𝐹 = −2.4 × 10−4N  The negative sign indicates that the force 
is in the opposite direction to the electric field lines. 
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Example 2 Motion perpendicular to the electric field 
An electron in an oscilloscope is fired at a speed of 1.0 × 106ms−1 through charged 
deflection plates of length 10mm.  If the strength of the electric field between the plates is 
1.0 × 104NC−1, calculate the deflection, s, of the electron when leaving the plates. 
 

Solution 2 Motion perpendicular to the electric field 
 
x-direction 
Calculate the time taken for the electron to pass the length of the plates. The component of 
the electron’s velocity in the x-direction is constant as the electric field will accelerate the 
electron vertically. 
𝑑 = 10mm = 10 × 10−3m 
 
 
 
 
y-direction 

Find the y-direction acceleration then use 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 to find the displacement. 

𝑎 =
𝐹

𝑚
 and 𝐹 = 𝑄𝐸 

𝑎 =
𝑄𝐸

𝑚
 

𝑎 =
1.6 × 10−19 × 1.0 × 104

9.11 × 10−31
 

𝑎 = 1.76 × 1015ms−1 

Substituting 𝑎 into 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 

𝑠 = 0 × 1.0 × 10−8 +
1

2
× 1.76 × 1015 × (1.0 × 10−8)2 

𝑠 = 0.088m 
 
Electromagnetism problem book pages 13 to 17, questions 1 to 12. 

- 

+ 

x 

y 

s 

d=10mm 

𝑠 = 𝑣𝑡  ⇒    𝑡 =
𝑠

𝑣
 

𝑡 =
10 × 10−3

1.0 × 106
 

𝑡 = 1.0 × 10−8s 
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1.8 I know the definition of the Electron Volt (eV) and can convert 
between electron volts and joules. 

 
The electron volt (eV) is a unit of energy not voltage.  It is defined as the work done 
on an electron as it is moved between two points with potential difference of 1 
volt. 

𝐸𝑤 = 𝑄𝑉 
𝐸𝑤 = 1.6 × 10−19 × 1 = 1.6 × 10−19J  

The electron volt is frequently used when dealing with the energy of subatomic 
particles and atomic processes.  It is also used with 𝐸 = 𝑚𝑐2 to express the mass of 
subatomic particles in terms of energy. 
 
To convert joules to electron volts divide by 1.6 × 10−19. 
To convert from electron volts to joules multiply by 1.6 × 10−19. 
 
Electromagnetism problem book page 18, questions 16 to 19. 
 

 
1.9 I explain the magnetic effect called ferromagnetism which occurs in 

certain metals. 
 
The motion of electrons in around the nucleus produce a magnetic dipole similar to a bar 
magnet. 
 
 
 
 
 
 
In most materials, the magnetic fields produced by the electrons cancel to produce no 
effect.  In some materials, the magnetic fields of each atom combine to produce an overall 
ferromagnetic effect. 
The magnetic fields produced by groups of atoms form regions called domains.  In each 
domain, the magnetic fields of the atoms all line up in the same direction.  This effectively 
makes each domain a dipole magnet.  Material in which magnetic domains form are called 
ferromagnetic.  There are few ferromagnetic materials.  Examples are iron, nickel and 
cobalt. 
 
 
 
 
 
 
 
 
 

S 

N 
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Diagram 1 shows a ferromagnetic material where the magnetic domains are aligned 
randomly.  The magnetic fields cancel leaving the material unmagnetized. 
Diagram 2 shows a ferromagnetic material after being affected by an external magnetic 
field.  The atoms within the magnetic domains are rotated to align with the externally 
applied magnetic field.  This alignment remains after the external magnetic field is removed 
leaving the material magnetised.  It is now a permanent magnet.  in this case some domains 
remain randomly orientated and some are aligned.  This means that the material is only 
partially magnetised. 
Diagram 3 shows a material where all the magnetic domains have been aligned using a 
strong external magnetic field.  This leaves a strong saturated magnet.  The magnetisation of 
the saturated magnet cannot be further increased. 
 
Demagnetisation 
Anything that disrupts the alignment of the domains will demagnetise a permanent magnet.  
This can be done by 

 placing the magnet in an external alternating magnetic field.  This is a common way 
to demagnetise materials. 

 repeatedly striking the magnet. 

 heating the magnet above its curie temperature.  Above this temperature the atoms 
in the ferromagnetic material have sufficient kinetic energy to rotate to random 
directions. 

 
Electromagnetism problem book page 19, questions 1 to 4. 
  

 

Randomly orientated domains. 
The material is not magnetised. 

 

All domains aligned. 
Material is magnetised 

and saturated. 

N
o

rt
h

 

So
u

th
 

 

Most domains aligned. 
Material is partially 

magnetised but unsaturated. 
N

o
rt

h
 

So
u

th
 

Diagram 1 Diagram 2 Diagram 3 
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1.10 I can draw magnetic field line patterns. 
 
Magnetic field lines point from north to south. The spacing between the field line indicates 
the strength on the magnetic field.  The closer the lines the stronger the field.  
 
  

N S 

S S N N 

N N S S 

S S N N 
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Coil of Wire 

Solenoid 
A solenoid (inductor) consists 
of a coil of wire.  Passing a 
current through the coil 
produces a magnetic field.  
 

Earth’s Magnetic Field 
The Earth’s liquid iron rich core 
produces currents which create a 
magnetic field.  This field is similar 
in shape to a dipole magnet in the 
core of the Earth. 
 

Magnetic field around a 
moving positive charge. 

Magnetic field around a 
moving negative charge. 
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1.11 I can solve problems involving the magnetic induction formed around a 
current carrying wire. 

 
Current in a wire produces a magnetic 
field which forms closed loops around 
the wire.  The direction of the magnetic 
field is given by the right-hand rule.  The 
thumb follows the direction of the 
conventional current.  The curl of the 
fingers gives the direction of the 
magnetic field.  The strength of the 
magnetic field is called the magnetic 
induction and is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
When a voltage of 6.0V is placed across the ends of a straight wire a magnetic induction of 
1.5 × 10−5T is formed at 10mm from a wire.  Find the resistance of the wire. 
 
Solution 
𝜇0 = 4𝜋 × 10−7Hm−1 
𝑟 = 10mm = 10 × 10−3m 
𝐵 = 1.5 × 10−5T 
 
 
 
 
 
 
 
 
 
 
Electromagnetism problem book page 21, questions 1 to 4. 
  

Conventional 
Current flows from 
positive to 
negative. 

Electrons flow 
from negative 
to positive. 

𝐵 =
𝜇0𝐼

2𝜋𝑟
 

Magnetic Induction (T) 

Current (A) 

Distance from 
the wire (m) 

Permeability of 
free space (Hm-1) 

𝐵 =
𝜇0𝐼

2𝜋𝑟
  ⇒    𝐼 =

2𝜋𝑟𝐵

𝜇0
 

 

𝐼 =
2𝜋 × 10 × 10−3 × 1.5 × 10−5

4𝜋 × 10−7
 

𝐼 = 0.75A 
 

𝑉 = 𝐼𝑅 ⇒    𝑅 =
𝑉

𝐼
 

𝑅 =
6.0

0.75
 

𝑅 = 8.0Ω 

 
 
 

Magnetic induction is 
measured in Tesla (T). 
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1.12 I can solve problems involving charged particles in magnetic fields in 
terms of their; mass, velocity, charge, radius of their path and the 
magnetic induction of the magnetic field. 

 
This is covered in section 2.4 of the Quanta and Waves Notes. 
 

1.13 I can solve problems involving the forces acting on a current carrying 
wire in a magnetic field. 

 
When a current carrying wire is placed in 
magnetic field there will be a force on the 
wire.  In section 2.4 in quanta and waves the 
force on moving charged particles in a 
magnetic field was found using the 
relationship 𝐹 = 𝑞𝑣𝐵.  This can be extended 
to the charges moving in a wire giving the 
relationship below.  The direction of the force 
on the wire can be found using the right-hand 
rule given in section 2.4 of quanta and waves.  
This must be done with the velocity direction 
given by the direction of the conventional 
current. 
 
 
 
 
 
 
 
 
 
 
 
  

𝐹 = 𝐼𝑙𝐵 sin 𝜃 

Force on the wire (N) 

Length of the wire (m) 

Magnetic Induction (T) 
 

Current (A) 

Angle between the wire and 
the magnetic induction (°) 
 

𝐼 -conventional 
current 

B 
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Example 1 
A wire carrying a current of 6.0 A has 0.50 m of its length placed in a magnetic field 
of magnetic induction 0.20 T.  Calculate the size of the force on the wire if it is 
placed: 

a. at right angles to the direction of the field 
b. at 45° to the direction of the field    
c. along the direction of the field (i.e. lying parallel to the field lines). 
 
Solution 2 
a. When the field is at a right angle to the wire 𝜃 = 90°. 
 𝐹 = 𝐼𝑙𝐵 sin 𝜃 
 𝐹 = 6.0 × 0.50 × 0.20 × sin 90° = 0.60N 
  
b. 𝐹 = 6.0 × 0.50 × 0.20 × sin 45° = 0.42N  
 
c. 𝜃 = 0°, sin 0° 0, so 𝐹 = 0𝑁  
 
Example 2 

Two wires each carrying 2.0A are placed 20mm apart.   
a. Calculate the force produced on wire 2. 
b. Do the wires attract or repel each other? 
 
Solution 2 

a. Use 𝐵 =
𝜇0𝐼

2𝜋𝑟
 to find magnetic induction at wire 2. 

Then use 𝐹 = 𝐼𝑙𝐵 sin 𝜃 to find the force on the wire. 
 
𝐼 = 2.0A 
𝑟 = 20mm = 20 × 10−3m 
𝜃 = 90° 
 
 
 
 
 
 
 
 
 
 
b. Wires attract.  Use the right hand rule from section 2.4 in the Quanta and Waves 

Notes. 
 
Electromagnetism problem book pages 21 to 26, questions 1 to 13. 
 
 

𝐵 =
𝜇0𝐼

2𝜋𝑟
  

𝐵 =
4𝜋 × 10−7 × 2.0

2𝜋 × 20 × 10−3
 

𝐵 = 2.0 × 10−5T 

 

𝐹 = 𝐼𝑙𝐵 sin 𝜃 

𝐹 = 2.0 × 1.2 × 2.0 × 10−5

× sin 90° 

𝐹 = 4.8 × 10−5N 

 

𝐼 

𝐼 
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1.14 I can state comparisons between nuclear, electromagnetic and 
gravitational forces in terms of relative magnitude and range. 

 
The table below compares the relative strength of the nuclear, electromagnetic and 
gravitational forces taking the nuclear force to have a value of 1. 
 

Force 
Relative 

Magnitude 
Range (metres) 

Strong 1 10−15 

Electromagnetic 10−3 Infinite 

Gravity 10−41 Infinite 
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Key Area: Circuits 
 

Success Criteria 
 

2.1 I can describe the variation of current and potential difference with time in a CR 

circuit during charging and discharging. 

2.2 I can define the time constant for a CR circuit and use this to and solve problems. 

2.3 I can define capacitive reactance. 

2.4 I can solve problems involving capacitive reactance, voltage, current frequency and 

capacitance. 

2.5 I understand how an inductor is constructed. 

2.6 I understand electromagnetic induction and the factors which affect the induction of 

a current in an inductor. 

2.7 I can state what is meant by the self-inductance of a coil.  

2.8 I know the effect of placing an iron core inside an inductor. 

2.9 I understand Lenz’s law and the effect back E.M.F has on the current in a circuit. 

2.10 I can solve problems involving back E.M.F and the energy stored in a capacitor. 

2.11 I can define inductive reactance. 

2.12 I can solve problems involving inductive reactance, voltage, current frequency and 

inductance.  
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2.1 I can describe the variation of current and potential difference with 
time in a CR circuit during charging and discharging. 

 
See section 4.8 and 4.9 in the Higher Physics Electricity notes 
 
The circuit shown contains a capacitor and resistor in series.  
This is a CR circuit.  When switch S is moved to position A the 
capacitor charges.  When moved to position B the capacitor 
discharges.  
The graphs of current potential difference and against time  
across the capacitor against time are shown below. 
 
Charging 
 
 
 
 
 
 
 
 
 
 
 
Discharging 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Revision of higher physics capacitors 
Electromagnetism problem book pages 27 to 30, questions 1 to 7. 
 
 

  

Switch in position B.  The capacitor 
is discharging. 
The voltage falls towards zero from 
an initial value of ℰ. 
The current has an initial value of  

−
ℰ

𝑅
 which falls towards zero. Time    0    

Capacitor P.d. 

ℰ  

Time    0    

Current 

ℰ

𝑅
 

Current is negative as it is 
flowing in the opposite direction 
to the charging current. 

Time    0    

Capacitor P.d. 

ℰ  

Time    0    

Current 

ℰ

𝑅
 

  

Switch in position A.  The capacitor 
is charging. 
The voltage rises from zero until it 
reaches the e.m.f. of the battery, ℰ. 

The current has an initial value of  
ℰ

𝑅
 

which falls towards zero. 
 

ℰ  

V 

R  

A 

A  

B  
Switch, S 
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2.2 I can define the time constant for a CR circuit and use this to and solve 
problems. 

 
In a circuit containing a capacitor and resistor, the 
relationships which define the charging current and potential 
difference across a capacitor are  
 

𝐼 =
𝑉𝐶

𝑅
𝑒−

𝑡
𝑅𝐶    and   𝑉𝐶 = 𝑉𝑆 [1 − 𝑒−

𝑡
𝑅𝐶] 

 
Where  
𝑉𝑠 - EMF of the supply 

𝑉𝐶 - potential difference across the capacitor 

𝑅 - resistance in the circuit 

𝐼 - Charging current 

𝐶 – Capacitance in the circuit 

 

The term 𝑅𝐶 in these relationships is called the time constant. 
 
 
 
 
 
 

 A large value of time constant gives a long charging and discharging time. 

 A small value of time constant give a short charging and discharging time. 
 

The exponential relationship of the charging curves means that the time taken for the 
voltage to reach the EMF of the supply and the charging current to decrease to zero is not 
easily determined.   The  time constant is used to make the charging and discharging times 
of CR circuits easy to compare. 

R 

𝑉𝑠 

You do not need to know or be able to 
use these relationships. 

𝑡 = 𝑅𝐶 
Time Constant (s) 

Resistance (Ω) 

Capacitance (F) 
 

Note 
The 𝑡 in this relationship is a 
constant.  It is a different 
quantity to the variable 𝑡 in the 
above relationships for 𝐼 and 
𝑉𝐶. 
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When the capacitor is charging the time 
constant represents the time taken for 

 the voltage across the capacitor 
to increase to 63% of the supply 
EMF. 

 The current in the circuit to 
decrease by 63% to 37% of the 
initial charging current. 

 
 
 
 
 
 
 
 
 
 
 
 
 
When the capacitor is discharging the 
time constant represents the time taken 
for 

 the voltage across the capacitor to 
decrease by 63% to 37% of the 
supply EMF. 

 The current in the circuit to 
decrease by 63% to 37% of the 
initial discharge current. 

 
 
 
 
 
 
 
 
 
 
  

Time (s) 0 

Voltage (V) 

𝑉𝐶 = 𝑉𝑆 [1 − 𝑒−
𝑡

𝑅𝐶] 

𝑡

𝑅𝐶
 

Time (s) 0 

Current (A) 

𝐼 =
𝑉𝐶

𝑅
𝑒−

𝑡
𝑅𝐶  

𝑡

𝑅𝐶
 

63% of 𝑉𝑆 

37% of 
𝑉𝑆

𝑅
 

Capacitor Charging 

Time (s) 
0 

Current (A) 

𝑡

𝑅𝐶
 

37% of 
𝑉𝑆

𝑅
 

Time (s) 0 

Voltage (V) 

𝑡

𝑅𝐶
 

37% of 𝑉𝑆 

Capacitor Discharging 

𝑉 = 𝑉𝑆 𝑒−
𝑡

𝑅𝐶 

𝐼 = −
𝑉𝐶

𝑅
𝑒−

𝑡
𝑅𝐶 
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Example 1 
You are given the following components.   

10MΩ Resistor 20μF Capacitor 
1MΩ Resistor 20pF Capacitor 
10kΩ Resistor 20nF Capacitor 
  

a. Which the combination of a single resistor and single capacitor in series give the 
longest charging time. 

b. Calculate the time constant for the combination found in part a. 
Solution 1 
a. For the longest time the time constant, 𝑅𝐶, must be have the largest value.  𝑅 and 𝐶 

have the largest values so choose 10MΩ resistor and a 20μF capacitor. 
 
b. 𝑡 = 𝑅𝐶 
 𝑡 = 10 × 106 × 10 × 10−6 
 𝑡 = 100s 
 
 
Example Finding the time constant from a graph 

The variation of potential difference across a capacitor in a of an RC circuit as it discharges is 
shown below.  The time constant for this circuit can be found by  

 Reading the initial voltage 𝑉𝐶. 

 Calculating 37% of 𝑉𝐶 . 

 Tracing a line from 37% of 𝑉𝐶 to the graph line then down to the time axis. 

 Reading the time constant value from the time axis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Electromagnetism problem book pages 30 to 31, questions 8 to 12. 
 

   0         10        20         30        40        50         60        70        80        90        100 
Time (s) 

0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

Po
te

n
ti

al
 D

if
fe

re
n

ce
 (

V
) 

𝑉𝐶 = 6.2V  

Read the time constant 
from the time axis. 
𝑡 = 29s 

37% of 𝑉𝐶 =
37

100
× 6.2 = 2.3V 

Project a line from 2.3V to the graph 
line then to the time axis. 
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2.3 I can define capacitive reactance. 
 
Capacitive reactance is the opposition to a.c. current by the capacitance of a capacitor.  
 
In a circuit containing resistance only, the frequency of the supply has no effect on the 
current in the circuit 
 
 
 
 
 
 
 
 
Ohm’s Law applies to resistance only circuits  

So  R =
𝑉𝐶

𝐼
 

 
In a circuit containing a resistor and capacitor (an RC circuit) the current depends on the 
frequency of the supply. 
 
 
 
 
 
 
 
 
 
The resistance in an RC circuit is fixed. The quantity capacitive reactance is defined to take 
into account the variation in current with frequency.  
 
 
 
 
 
 
 
 
  

R 

𝑉𝐶 

~ 

Frequency 

Current 

R 

𝑉𝐶 

~ 

Frequency 

Current 

𝑋𝐶 =
𝑉

𝐼
 

Capacitive Reactance (Ω) 

Voltage across the capacitor (V) 

Current (A) 
 

𝑋𝐶 =
1

2𝜋𝑓𝐶
 

Capacitive Reactance (Ω) 

Supply frequency (Hz) 

Capacitance (F) 
 

Compare with 
inductive reactance 
in section 2.11. 
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2.4 I can solve problems involving capacitive reactance, voltage, current 
frequency and capacitance. 

 
Example 1 
The circuit shown runs from the UK mains at 230V, 50Hz.  Calculate the capacitive reactance 
in the circuit. 
 
Solution 1 
𝑓 = 50Hz 
𝐶 = 30mF = 30 × 10−3F 
𝑉 = 230V 
 

𝑋𝐶 =
1

2𝜋𝑓𝐶
 

𝑋𝐶 =
1

2𝜋 × 50 × 30 × 10−3
 

𝑋𝐶 = 0.11Ω 

 
 
Example 
A circuit containing capacitive components is designed in the US to operate at 100V derived 
from mains 60Hz supply.  It is shipped to the UK where it is operated at 100V derived from 
the main 50Hz supply.  It is found that the power output from the circuit is reduced.  Explain 
why. 
 
Solution 
The frequency of the supply is decreased so the capacitive reactance in the circuit will be 

increased as 𝑋𝐶 =
1

2𝜋𝑓𝐶
.  As the capacitive reactance is increased the current in the circuit 

will decrease as 𝑋𝐶 =
𝑉

𝐼
.  The reduced current reduces the power output of the circuit. 

 
Electromagnetism problem book pages 31 to 33, questions 1 to 6. 

  

R 

  230V 

~ 

30mF 
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2.5 I understand how an inductor is constructed. 
 
An inductor consists of a coil of wire which can contain and metal core  

The inductance of an inductor depends on 

 The number of turns per metre.  The greater the number of turns per meter the 
larger the inductance. 

 Having an iron core.  Inductors with an iron core have a higher inductance than an 
inductor without a core. 

 

2.6 I understand electromagnetic induction and the factors which affect 
the induction of a current in an inductor. 

 
Magnetic induction occurs when the movable charges in a conductor are subject to a 
changing magnetic field.   This causes them to move producing an electrical current.  The 
diagram below shows a magnet being moved in and out of a coil of wire.  This will produce a 
voltage reading on the voltmeter. 
 
 
 
The factors which affect the 
voltage produced are: 
 

 The speed of the magnet.  The 
faster the magnet the greater the rate of change of the 
magnetic field, the greater the induced voltage. 

 The strength of the magnetic field.  The greater the 
magnetic field the greater the voltage induced. 

 Number of turns on the coil.  The greater the number of turns 
the larger the voltage produced. 

 Direction of the magnet field.  Reversing the magnet reverses the polarity of the 
voltage. 

 Direction of motion.  Reversing the direction of motion of the magnet reverses the 
polarity of the voltage. 

 

  

Symbol for an 
inductor with a 
core 

Symbol for an 
inductor without 
a core 

S N
 

Voltmeter 
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2.7 I can state what is meant by the self-inductance of a coil.  
 
When current passes through a wire, a magnetic 
field is produced (see section 1.10).  When 
formed into an inductor coil the magnetic 
field shown is produced.  When connected to 
an a.c. supply, the magnetic field produced by 
the coil will alternate along with the flow of 
current. 
The alternating magnetic field produced by the 
inductor coil induces E.M.F in the coil.  This is self-
inductance. 
 
 
 
 
 
 

2.8 I know the effect of placing an iron core inside an inductor. 
 
Placing an iron core within the inductor 
increases the magnetic field produced. 
The iron core is within the magnetic field 
produced by the inductor coil.  The makes 
the core a magnet (See section 1.9) which 
increases the magnetic induction.  The 
increased magnetic induction produces a 
greater back E.M.F.  
 
 
 
 
 
 
 
Electromagnetism problem book page 34, questions 1 and 2. 

  

Inductor 
coil 

~ 
a.c. supply 

Iron core 
within the 
coil 

~ a.c. 
sup
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2.9 I understand Lenz’s law and the effect back E.M.F has on the current in 
a circuit. 

 
Lenz’s law states that the E.M.F produced by self inductance will oppose the current which 
produced it.  The E.M.F produced by self inductance is called back E.M.F. 
 
To see the effect of self inductance and back E.M.F. compare the circuits below with and 
without an inductor. 
 
 
 
  

R 

  d.c. 

Time 

V
o

lt
ag

e
, 𝑉

1
 

0 Time 

C
u

rr
e

n
t 

0 

𝐴   

𝑉1   

Switch Closed 

+      - 

No inductor 
When the switch is closed the supply voltage, 𝑉1, and circuit 
current immediately rise.  

R 

  d.c. 

Time 

V
o

lt
ag

e,
 𝑉

1
 

0 Time 

C
u

rr
e

n
t 

0 

𝐴   

𝑉1   

Switch Closed 

+      - 

𝑉2   

Time 

V
o

lt
ag

e,
 𝑉

2
 

0 
With an inductor 
When the switch is closed, the supply voltage rises 
immediately.  As the current rises in the inductor the self-
inductance produces a back E.M.F., 𝑉2.  This opposes the 
E.M.F. from the supply reducing the overall E.M.F. in the 
circuit.  This limits the rate of increase in current in the 
circuit.  As the current rises from zero to the value given by  
𝑉1

𝑅
 its rate of change decreases which decreases the back 

E.M.F. 
 

Back 
E.M.F. 
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Comparing a large inductance to a small inductance 
The larger the inductance of an inductor the greater its effect on a changing current in a 
circuit. 
 
 
 
 
 
 
 
 
 
 

2.10 I can solve problems involving back E.M.F and the energy stored in a 
capacitor. 

 
The back E.M.F. produced by an inductor is given by  
  
 
 
 
 
 
 
 
 
 
Note that the back E.M.F depends on the rate of change of current rather than current.  This 
means that a rapidly changing current, e.g. suddenly switching a circuit off, can produce a 
much larger back E.M.F. than the supply E.M.F. 
 
 
The energy stored in an inductor is given by   

𝜖 = −𝐿
𝑑𝐼

𝑑𝑡
 

Back E.M.F 

Inductance (H) 

Rate of change of 
current (As-1) 
 

The unit of inductance is the Henry (H).  
 
The negative sign shows that the back E.M.F 
is in the opposite direction to the 
(conventional) current. 
 

Time 

C
u

rr
e

n
t 

0 

Small inductance  

Large inductance  

𝐸 =
1

2
𝐿𝐼2 

Energy 
Stored (J) 

Inductance (H) 

Current (A) 
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Example 1 

An inductor is connected to a 6.0 V d.c. supply which has a negligible internal resistance.  

The inductor has a resistance of 0.80 .  When the circuit is switched on it is observed that 

the current increases gradually.  The rate of growth of the current is 200 As-1 when the 

current in the circuit is 4.0 A.   

 

 

 

 

 

 

 

a. Calculate the induced e.m.f. across the coil when the current is 4.0 A. 

b. Hence calculate the inductance of the coil. 

c. Calculate the energy stored in the inductor when the current is 4.0 A. 

d.i. When is the energy stored by the inductor a maximum?   

ii. What value does the current have at this time? 
 

Solution 1 

a. Potential difference across the resistive element of the circuit   

𝑉 = 𝐼𝑅 

𝑉 = 4.0 × 0.80 = 3.2V 

Thus p.d. across the inductor = 6.0 − 3.2 = 2.8V 

b. Using  

𝜖 = −𝐿
𝑑𝐼

𝑑𝑡
 

𝐿 =
𝜖

(
𝑑𝐼
𝑑𝑡

)
 

𝐿 =
2.8

200
= 0.014H 

  c. 𝐸 =
1

2
𝐿𝐼2 

𝐸 =
1

2
× 0.014 × 4.02 = 0.11J 

d.i. The energy will be a maximum when the current reaches a maximum steady value. 

ii.          𝐼𝑚𝑎𝑥 =
𝑉

𝑅
=

6.0

0.8
= 7.5A 

 

Electromagnetism problem book pages 34 to 38, questions 3 to 8. 

L 

resistance of 

inductor 0.80  

_ 
+ 

6 V 
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2.11 I can define inductive reactance. 
 
Inductive reactance is the opposition to current by the inductance of an inductor. 
 
In a circuit containing resistance only the frequency of the supply has no effect on the 
current in the circuit 
 
 
 
 
 
 
 
 
Ohm’s Law applies to resistance only circuits  

So  R =
𝑉𝐶

𝐼
 

 
With an inductor in a circuit the current depends on the frequency of the supply. 
 
 
 
 
 

 
 
 
 
The resistance in an inductive circuit is fixed. The quantity inductive reactance is defined to 
take into account the variation in current with frequency.  
 
 
 
 
 
 
 
 
  

R 

𝑉𝐶 

~ 

Frequency 

Current 

R 

𝑉𝐶 

~ 

Frequency 

Current 

𝑋𝐿 =
𝑉

𝐼
 

Inductive Reactance (Ω) 

Voltage across the inductor (V) 

Current (A) 
 

𝑋𝐿 = 2𝜋𝑓𝐿 

Inductive Reactance (Ω) 

Supply frequency (Hz) 

Inductance (H) 
 

Compare with 
capacitive reactance 
in section 2.3 
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2.12 I can solve problems involving inductive reactance, voltage, current 
frequency and inductance. 

 
Example 
An inductor has an inductance of 0.03H.  It is connected in a a.c. circuit of 12V 50Hz.   
a. Calculate the reactance of the of the inductor. 
b. Calculate the R.M.S current in the circuit. 
c. The frequency of the circuit is increased to 100Hz.  State what happens to the 

current in the circuit when the frequency is increased.  
 
Solution 
a. 𝑋𝐿 = 2𝜋𝑓𝐿 

 𝑋𝐿 = 2𝜋 × 50 × 0.03 

 𝑋𝐿 = 9.4Ω  (9.42Ω) 

 

b.          𝑋𝐿 =
𝑉

𝐼
   ⇒    𝐼 =

𝑉

𝑋𝐿
 

𝐼 =
12

9.42
 

 𝐼 = 1.3A 

c. Current decreases. 

 

 

Electromagnetism problem book pages 38 to 41, questions 1 to 7. 
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Key Area: Electromagnetic Radiation 
 

Success Criteria 
 

3.1 I know that electricity and magnetism are linked in electromagnetic radiation.  

3.2 I understand that electromagnetic radiation is made up of an electric and magnetic 

field. 

3.3 I can solve problems involving the speed of light, the permittivity of free space and 

the permeability of free space. 
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3.1 I know that electricity and magnetism are linked in electromagnetic 
radiation.  

 
When a charged particle is accelerated the electric field lines surrounding the particle is 
distorted.  This distortion propagates out from the charge at the speed of light.  This is the 
electric field component of electromagnetic radiation.  As a changing electric field produces 
a magnetic field the propagating electric field also produces a propagating magnetic field. 
 

 
 

3.2 I understand that electromagnetic radiation is made up of an electric 
and magnetic field. 

 
Electromagnetic radiation consists of two fields; an electric field and a perpendicular 
magnetic field.  These two fields propagate in phase through space as oscillating waves in a 
direction perpendicular to both fields.  The changing electric field induces a changing 
magnetic field and the changing magnetic field produces a changing electric field. 

 
 
  

 

Stationary Electrical 
Charge 

Distortion in the field line  

 

Accelerating Electrical 
Charge 

Electric Field 

Magnetic Field 
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3.3 I can solve problems involving the speed of light, the permittivity of 
free space and the permeability of free space. 

  
The electric and magnetic properties of space are related to the speed of light by the 
relationship 

 
Example 
Calculate the speed of light using the relationship 

𝑐 =
1

√𝜖0𝜇0

  

 
 Solution 
 𝜇0 = 4𝜋 × 10−7Fm−1 
 𝜖0 = 8.85 × 10−12Hm−1 

 

𝑐 =
1

√8.85 × 10−12 × 4𝜋 × 10−7
 

 
𝑐 = 3.0 × 108ms−1 
 
 

Electromagnetism problem book pages 41 and 42, questions 1 to 4. 
  

𝑐 =
1

√𝜖0𝜇0

 

Speed of 
light (ms-1) 

Permittivity of free 
space (Fm-1) 

Permeability of free 
space (Hm-1) 
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Current, Mathematics and Right Hand 
Rules  
 
This section is background.  You will not be examined on this material.   
 

Current 
Current is the flow of electrical charges.  These charges can be electrons in metals, electrons 
and holes in semiconductors, ions in solutions or protons in particle accelerators.  These can 
carry a negative charge (electrons, ions) or positive charges (holes, ions, protons). 

 
Defining the direction of current is arbitrary as charges can flow either direction.  The 
direction of conventional current is defined as the direction positive charges would move in 
a circuit.   
When dealing with electrical or electronic circuits conventional current rather than electron 
flow is normally used.  This can be see with electronic components that are labelled with 
arrows.  These arrows point in the direction of the conventional current.  The triangles in 
LED and diode symbols also point in the direction of conventional current when forward 
biased. 
 
 
 
 
 
 
 
 
  

Metal Wire 
Electrons  

- + 
Electrons and holes 

Semiconductor 

- + 
Conventional Current Conventional Current 

Drain 

Gate 
Source 

Emitter 

Collector 

Base 
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Mathematics and Right Hand Rules 
Cartesian axes used in mathematics and the sciences are always right-hand axes.  This is an 
arbitrary choice.  It is however the universal choice of axes.  For consistency, right hand axes 
and right hand rules are used in all the notes in the Advanced Higher Physics course. 

You will occasionally come across left-hand rules for the Lorentz Force and the directions of 
magnetic fields.  These rules are not wrong and if done correctly will give the same results 
as the right hand rules.  If you use these left hand rules bear in mind that they are not 
consistent with the vector mathematics used in physics, engineering.  
 
Right Hand Rule for Magnetic Force 
Right hand axes are used to define the direction of a vector product of two vectors.  This is 
important when finding the direction of the force on a charged particle caused by a 
magnetic field. 
The magnitude of the magnetic force is given by 𝐹 = 𝑞𝑣𝐵.  This is a simplified scalar version 
of the Lorentz Force relationship; 
 
𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩) 
 
 
The direction of the resultant force vector is defined using right hand axes.   
 
 
 
 
 
 
 
 
 
Right Hand Rule for Magnetic Induction Around a Wire 
Finding the direction of the magnetic field is around a current carrying wire is also defined 
by a right hand rule (see section 1.11) which uses conventional current. 
 
  

x x 

y 

y 

z 
z Right Hand Axes 

x x 

y 

y 

z 
z Left Hand Axes 

Where: 𝑭, 𝑬 and 𝑩 are vectors and the × symbol is 
the vector cross product. 

𝑭 = 𝒗 × 𝑩 x 

v 

y 

z 
B 
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Quantities, Units and Multiplication Factors 
 

  

 

   

Quantity 
Quantity 
Symbol 

Unit 
Unit 

Abbreviation 

capacitance C Farad F 

capacitive reactance 𝑋𝑐 Ohm Ω  

charge Q coulomb C 

current 𝐼 Ampere A 

displacement y, s metre m 

E.M.F. 𝜖 Volt V 

electric field strength E Newton per coulomb NC-1 or Vm-1 

energy E Joule J 

force F newton N 

frequency f hertz Hz 

inductance L Henry H 

inductive reactance 𝑋𝐿 Ohm Ω  

magnetic induction B Tesla T 

mass m kilogram kg 

momentum p 
kilogram metre per 

second 
kgms−1 

radius/distance r metre m 

resistance 𝑅, 𝑟 Ohm Ω  

speed/velocity v metre per second ms−1 

time t second s 

voltage/Potential 
difference 

𝑉 Volt V 

wavelength 𝜆  metre m 

work done 𝐸𝑤 Joule J 

Prefix Name Prefix Symbol Multiplication Factor 

Pico p × 10−12 

Nano n × 10−9 

Micro μ × 10−6 

Milli m × 10−3 

Kilo k × 103 

Mega M × 106 

Giga G × 109 

Tera T × 1012 

 

You will not be given the 
tables on this page in any of 
the tests or the final exam 
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