Advanced Higher Physics

Electromagnetism

Notes

Name

Key Area Notes, Examples and Questions

Page 3 Fields
Page 24 Circuits
Page 38 Electromagnetic Radiation
Other Notes
Page 41 Current, Mathematics and Right Hand Rules
Page 43 Quantities, Units and Multiplication Factors
Page 44 Relationships Sheets
Page 49 Data Sheet

Key Area: Fields

Success Criteria

1.1 I can define electric field strength.
1.2 I can draw electric field patterns around single charges, a system of two charges and a uniform electric field.
1.3 I can solve problems involving electric fields and the forces produced on charged particles.
1.4 I can define electric potential.
1.5 I can state that the energy required to move a charge between two points in an electric field is independent of the path taken.
1.6 I can solve problems involving electric potential.
1.7 I can solve problems on the motion and energy of charged particles in uniform electric fields.
1.8 I know the definition of the Electron Volt (eV) and can convert between electron volts and joules.
1.9 I explain the magnetic effect called ferromagnetism which occurs in certain metals.
1.10 I can draw magnetic field line patterns.
1.11 I can solve problems involving the magnetic induction formed around a current carrying wire.
1.12 I can solve problems involving charged particles in magnetic fields in terms of their; mass, velocity, charge, radius of their path and the magnetic induction of the magnetic field.
1.13 I can solve problems involving the forces acting on a current carrying wire in a magnetic field.
1.14 I can state comparisons between nuclear, electromagnetic and gravitational forces in terms of relative magnitude and range.

1.1 I can define electric field strength and know its relationship to the force produced on a charged particle.

Charged particles exert forces on other charged particles.

A charged particle produces an electric field which occupies the surrounding space. The electric field exerts a force on other charged particles.

Electric field strength, E , at any point is the force applied per unit positive charge at that point. Electric Field Strength is a vector quantity with units of Newtons per Coulomb $\left(\mathrm{NC}^{-1}\right)$. or in Volts per Metre (Vm^{-1})

Electric Fields around Point charges
The relationship which gives the electric field produced around a point charge is

Note: Permittivity of Free Space

ϵ_{0} is a constant which determines how easily the electric field can permeate a vacuum (free space). The value permittivity for air is very close to ϵ_{0} and so can be used for all calculations you will meet. When the electric field is permeating other materials ϵ usually has a much higher value.

Forces Produced by Electric Fields

The relationship between the force produced on a charged particle in an electric field, charge and electric field strength is given by the relationship

Forces - Point Charges

Both the relationships $F=Q E$ and $\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \epsilon_{0} r^{2}}$ can be combined to give Coulomb's Law
Note that Q in each of these two relationships refer to different charges.
Charge on the particle in the

Note

Like Newton's Law of Gravitation, Coulomb's Law is an inverse square law.

Forces - Uniform Electric fields

From the Higher Physics course

$E_{w}=F d$ and $E_{W}=Q V$
Combining these gives
$F=\frac{Q V}{d}$
Equating this to the definition of an electric
field, $F=Q E$ gives
$\frac{Q V}{d}=Q E$
Which simplifies to
$V=E d$

When performing calculations with uniform fields between charged plates $V=E d$ is usually used as the voltage across the plates is usually known.

1.2 I can draw electric field patterns around single charges, a system of two charges and a uniform electric field.

Also see Higher Physics Particle and Waves Notes section 2.2.

Single positive charge

Single negative charge

1.3 I can solve problems involving electric fields and the forces produced on charged particles.

Example 1

Find the magnitude of electric field strength at the Bohr radius ($5.29 \times 10^{-11} \mathrm{~m}$) of a hydrogen atom.

Solution 1

$$
\begin{array}{ll}
r=5.29 \times 10^{-11} \mathrm{~m} & E=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \\
\epsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1} & E=\frac{1.6 \times 10^{-19}}{4 \pi \times 8.85 \times 10^{-12} \times 5.29 \times 10^{-11}} \\
Q=1.6 \times 10^{-19} \mathrm{C} & E=27 \mathrm{NC}^{-1}
\end{array}
$$

Electromagnetism problem book pages 6 and 7, questions 1 to 7.

Example 2 - Electric Dipole

The diagram below shows two charged particles in an arrangement called an electric dipole. Find the electric field at point P.

Solution 2 - Electric Dipole

$r_{+}=r_{-}=\sqrt{\left(9.0 \times 10^{-10}\right)^{2}+\left(1.0 \times 10^{-9}\right)^{2}}=1.345 \times 10^{-9} \mathrm{~m}$
Electric field due to the positive charge
$E_{+}=\frac{Q_{+}}{4 \pi \epsilon_{0} r_{+}^{2}}=\frac{5.0 \times 10^{-10}}{4 \times \pi \times 8.85 \times 10^{-12} \times\left(1.345 \times 10^{-9}\right)^{2}}=2.485 \times 10^{18} \mathrm{NC}^{-1}$

Electric field due to the negative charge
$E_{+}=\frac{Q_{+}}{4 \pi \epsilon_{0} r_{-}^{2}}=\frac{-5.0 \times 10^{-10}}{4 \times \pi \times 8.85 \times 10^{-12} \times\left(1.345 \times 10^{-9}\right)^{2}}=-2.485 \times 10^{18} \mathrm{NC}^{-1}$

To find the resultant electric field first find the angle θ.

$\tan \theta=\frac{9.0 \times 10^{-10}}{1.0 \times 10^{-9}}$
$\theta=\tan ^{-1}\left(\frac{9.0 \times 10^{-10}}{1.0 \times 10^{-9}}\right)=41.99^{\circ}$
Using the cosine rule
$E_{R}=\sqrt{\left|E_{-}\right|^{2}+\left|E_{+}\right|^{2}-2\left|E_{-}\right|\left|E_{+}\right| \cos 2 \theta}$
As $\quad\left|E_{-}\right|^{2}=\left|E_{+}\right|^{2}=|E|^{2}$ and $\left|E_{-}\right|\left|E_{+}\right|=|E|^{2}$
$E_{R}=\sqrt{2|E|^{2}-2|E|^{2} \cos 2 \theta}$
$E_{R}=|E| \sqrt{2(1-\cos 2 \theta)}$
$E_{R}=2.485 \times 10^{18} \times \sqrt{2(1-\cos (2 \times 41.99))}$
$E_{R}=3.3 \times 10^{18} \mathrm{NC}^{-1}$ vertically downward

Electromagnetism problem book page 9, question 13.

Example 3-Coulomb's Law

Helium ${ }_{2}^{4} \mathrm{He}$ consists of two protons and two neutrons. Calculate the ratio, $\frac{\text { Electrostaic Force }}{\text { Gravitational Force }}$ for the two protons when they are $10^{-15} \mathrm{~m}$ apart.

Solution 3 - Coulomb's Law

Electric Force
$F_{E}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}}=\frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{4 \pi \times 8.85 \times 10^{-12} \times\left(10^{-15}\right)^{2}}=230 \mathrm{~N}$
Gravitational Force
$F_{G}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{6.67 \times 10^{-11} \times 1.673 \times 10^{-27} \times 1.673 \times 10^{-27}}{\left(10^{-15}\right)^{2}}=1.87 \times 10^{-34} \mathrm{~N}$
$\frac{F_{E}}{F_{G}}=\frac{230}{1.87 \times 10^{-34}}=1.2 \times 10^{36}$
Note how the electric force is much larger than the gravitational force.

Example 4 - Coulomb's Law

Three charged objects are fixed in position. Each has a charge of $+120 \mu \mathrm{C}$. Calculate the magnitude of the force on charge 2.

Solution 4 Coulomb's Law

Force on charge 2 due to charge 3
$F_{23}=\frac{Q_{2} Q_{3}}{4 \pi \epsilon_{0} r^{2}}=\frac{120 \times 10^{-6} \times 120 \times 10^{-6}}{4 \pi \times 8.85 \times 10^{-12} \times 2.0^{2}}=32.37 \mathrm{~N}$
Force on charge 2 due to charge 1
$F_{21}=\frac{Q_{2} Q_{3}}{4 \pi \epsilon_{0} r^{2}}=\frac{120 \times 10^{-6} \times 120 \times 10^{-6}}{4 \pi \times 8.85 \times 10^{-12} \times 1.0^{2}}=129.5 \mathrm{~N}$

Force F_{23} and F_{21} are both vectors
$F_{R}=\sqrt{129.5^{2}+32.37^{2}}=133 \mathrm{~N}$

Electromagnetism problem book pages 4 to 6, questions 1 to 11; page 8 question 10

Example 5 - Uniform Electric Fields

Two charged plates 1.0 cm apart have a voltage of 4000 V placed across them.
a. Find the electric field strength between the two plates.
b. If an electron is placed between the plates, calculate the electric force on the electron.

a. $\quad d=1.0 \mathrm{~cm}=0.01 \mathrm{~m}$

$$
\begin{aligned}
& V=E d \Rightarrow E=\frac{V}{d} \\
& E=\frac{4000}{0.01}=4.0 \times 10^{5} \mathrm{Vm}^{-1}
\end{aligned}
$$

b. $\quad F=Q E$

$$
\begin{aligned}
& F=1.6 \times 10^{-19} \times 4.0 \times 10^{5} \\
& F=6.4 \times 10^{-14} \mathrm{~N}
\end{aligned}
$$

Electromagnetism problem book pages 7 to 9, questions 8, 9, 11 to 13.

1.4 I can define electric potential.

Electric potential at a point is the work done in moving a unit positive charge Q_{t} from infinity to that point. Note the similarity between this definition and the definition of gravitational potential.

Electric potential (V)

Note

Electric potential is a scalar quantity.

Permittivity of free
space (Fm^{-1})

1.5 I can state that the energy required to move a charge between two points in an electric field is independent of the path taken.

From the electric potential relationship, the electric potential energy of a unit charge depends on the distance from the charge producing the field. The distances between the initial and final positions determine the energy required to move the charge. Whether the charge follows path 1 or path 2 the energy change will be the same.

1.6 I can solve problems involving electric potential.

Example 1

Calculate the electric potential at point P midway between the two charges.

Solution 1

$r=\frac{1.0}{2}=0.50 \mathrm{~m}$
$V_{1}=\frac{Q}{4 \pi \epsilon_{0} r}=\frac{100 \times 10^{-12}}{4 \pi \times 8.85 \times 10^{-12} \times 0.50}=1.80 \mathrm{~V}$
$V_{2}=\frac{Q}{4 \pi \epsilon_{0} r}=\frac{-400 \times 10^{-12}}{4 \pi \times 8.85 \times 10^{-12} \times 0.50}=-7.19 \mathrm{~V}$
Potential at P
$V_{P}=1.80-7.19=-5.4 \mathrm{~V}$

Example 2

Three small charges are each 4.0 cm from the point P. Calculate the electric potential at point P.
(1) 3.0 nC

Solution 2

- P
(3) 2.0 nC
$r=4.0 \mathrm{~cm}=0.04 \mathrm{~m}$
(2) $-5.0 n \mathrm{C}$
$V_{2}=\frac{Q}{4 \pi \epsilon_{0} r}=\frac{-5.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times 0.04}=-1124 \mathrm{~V}$
$V_{3}=\frac{Q}{4 \pi \epsilon_{0} r}=\frac{2.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times 0.04}=449.6 \mathrm{~V}$
Potential at P
$V_{P}=674.4-1124+449.6=0 \mathrm{~V}$

Electromagnetism problem book pages 9 to 11, questions 1 to 14.

1.7 I can solve problems on the motion and energy of charged particles in uniform electric fields.

Example 1 Motion parallel to the electric field

 A particle of mass $2.5 \times 10^{-8} \mathrm{~kg}$ with a charge of $-4.0 \times 10^{-10} \mathrm{C}$ starts on the negative plate in the diagram shown. The voltage across the plates is 3.0 kV .a. Find the electric field strength between the plates.
b. Find the electric force acting on the charged particle.

c. find the speed of the mass as it strikes the positive plate.

Solution 1 Motion parallel to the electric field

a. $\quad d=5.0 \mathrm{~mm}=5.0 \times 10^{-3} \mathrm{~m}$ $V=3.0 \mathrm{kV}=3.0 \times 10^{3} \mathrm{~V}$

$$
\begin{aligned}
& V=E d \Rightarrow E=\frac{V}{d} \\
& E=\frac{3.0 \times 10^{3}}{5.0 \times 10^{-3}} \\
& E=6.0 \times 10^{5} \mathrm{Vm}^{-1}
\end{aligned}
$$

b. $\quad Q=-4.0 \times 10^{-10} \mathrm{C}$

$$
\begin{aligned}
& F=Q E \\
& F=-4.0 \times 10^{-10} \times 6.0 \times 10^{5} \\
& F=-2.4 \times 10^{-4} \mathrm{~N} \text { The negative sign indicates that the force } \\
& \text { is in the opposite direction to the electric field lines. }
\end{aligned}
$$

c. Work done on the charged particle $E_{W}=Q V$

Kinetic energy of the particle $E_{k}=\frac{1}{2} m v^{2}$
As all work done will be converted to kinetic energy
$\frac{1}{2} m v^{2}=Q V$
$v=\sqrt{\frac{2 Q V}{m}}$
$v=\sqrt{\frac{2 \times 4.0 \times 10^{-10} \times 3.0 \times 10^{3}}{2.5 \times 10^{-8}}}$
$v=9.8 \mathrm{~ms}^{-1}$

Example 2 Motion perpendicular to the electric field

An electron in an oscilloscope is fired at a speed of $1.0 \times 10^{6} \mathrm{~ms}^{-1}$ through charged deflection plates of length 10 mm . If the strength of the electric field between the plates is $1.0 \times 10^{4} \mathrm{NC}^{-1}$, calculate the deflection, s, of the electron when leaving the plates.

Solution 2 Motion perpendicular to the electric field

x-direction

Calculate the time taken for the electron to pass the length of the plates. The component of the electron's velocity in the x-direction is constant as the electric field will accelerate the electron vertically.
$d=10 \mathrm{~mm}=10 \times 10^{-3} \mathrm{~m} \quad s=v t \Rightarrow t=\frac{s}{v}$

$$
\begin{aligned}
& t=\frac{10 \times 10^{-3}}{1.0 \times 10^{6}} \\
& t=1.0 \times 10^{-8} \mathrm{~S}
\end{aligned}
$$

\mathbf{y}-direction
Find the y-direction acceleration then use $s=u t+\frac{1}{2} a t^{2}$ to find the displacement
$a=\frac{F}{m}$ and $F=Q E$
$a=\frac{Q E}{m}$
$a=\frac{1.6 \times 10^{-19} \times 1.0 \times 10^{4}}{9.11 \times 10^{-31}}$
$a=1.76 \times 10^{15} \mathrm{~ms}^{-1}$
Substituting a into $s=u t+\frac{1}{2} a t^{2}$
$s=0 \times 1.0 \times 10^{-8}+\frac{1}{2} \times 1.76 \times 10^{15} \times\left(1.0 \times 10^{-8}\right)^{2}$
$s=0.088 \mathrm{~m}$

Electromagnetism problem book pages 13 to 17, questions 1 to 12.

1.8 I know the definition of the Electron Volt (eV) and can convert between electron volts and joules.

The electron volt (eV) is a unit of energy not voltage. It is defined as the work done on an electron as it is moved between two points with potential difference of 1 volt.

$$
\begin{aligned}
& E_{w}=Q V \\
& E_{w}=1.6 \times 10^{-19} \times 1=1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

The electron volt is frequently used when dealing with the energy of subatomic particles and atomic processes. It is also used with $E=m c^{2}$ to express the mass of subatomic particles in terms of energy.

To convert joules to electron volts divide by 1.6×10^{-19}.
To convert from electron volts to joules multiply by 1.6×10^{-19}.
Electromagnetism problem book page 18, questions 16 to 19.

1.9 I explain the magnetic effect called ferromagnetism which occurs in certain metals.

The motion of electrons in around the nucleus produce a magnetic dipole similar to a bar magnet.

In most materials, the magnetic fields produced by the electrons cancel to produce no effect. In some materials, the magnetic fields of each atom combine to produce an overall ferromagnetic effect.
The magnetic fields produced by groups of atoms form regions called domains. In each domain, the magnetic fields of the atoms all line up in the same direction. This effectively makes each domain a dipole magnet. Material in which magnetic domains form are called ferromagnetic. There are few ferromagnetic materials. Examples are iron, nickel and cobalt.

Diagram 1 shows a ferromagnetic material where the magnetic domains are aligned randomly. The magnetic fields cancel leaving the material unmagnetized.
Diagram $\mathbf{2}$ shows a ferromagnetic material after being affected by an external magnetic field. The atoms within the magnetic domains are rotated to align with the externally applied magnetic field. This alignment remains after the external magnetic field is removed leaving the material magnetised. It is now a permanent magnet. in this case some domains remain randomly orientated and some are aligned. This means that the material is only partially magnetised.
Diagram 3 shows a material where all the magnetic domains have been aligned using a strong external magnetic field. This leaves a strong saturated magnet. The magnetisation of the saturated magnet cannot be further increased.

Demagnetisation

Anything that disrupts the alignment of the domains will demagnetise a permanent magnet. This can be done by

- placing the magnet in an external alternating magnetic field. This is a common way to demagnetise materials.
- repeatedly striking the magnet.
- heating the magnet above its curie temperature. Above this temperature the atoms in the ferromagnetic material have sufficient kinetic energy to rotate to random directions.

Electromagnetism problem book page 19, questions 1 to 4.

1.10 I can draw magnetic field line patterns.

Magnetic field lines point from north to south. The spacing between the field line indicates the strength on the magnetic field. The closer the lines the stronger the field.

Version 1.0

Solenoid

A solenoid (inductor) consists of a coil of wire. Passing a current through the coil produces a magnetic field.

Earth's Magnetic Field

The Earth's liquid iron rich core produces currents which create a magnetic field. This field is similar in shape to a dipole magnet in the core of the Earth.

Magnetic field around a moving positive charge.

Magnetic field around a moving negative charge.

1.11 I can solve problems involving the magnetic induction formed around a current carrying wire.

Current in a wire produces a magnetic field which forms closed loops around the wire. The direction of the magnetic field is given by the right-hand rule. The thumb follows the direction of the conventional current. The curl of the fingers gives the direction of the magnetic field. The strength of the magnetic field is called the magnetic induction and is given by

$+$

Example

When a voltage of 6.0 V is placed across the ends of a straight wire a magnetic induction of $1.5 \times 10^{-5} \mathrm{~T}$ is formed at 10 mm from a wire. Find the resistance of the wire.

Solution

$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
$r=10 \mathrm{~mm}=10 \times 10^{-3} \mathrm{~m}$
$B=1.5 \times 10^{-5} \mathrm{~T}$
$B=\frac{\mu_{0} I}{2 \pi r} \Rightarrow I=\frac{2 \pi r B}{\mu_{0}}$

$$
\begin{aligned}
& I=\frac{2 \pi \times 10 \times 10^{-3} \times 1.5 \times 10^{-5}}{4 \pi \times 10^{-7}} \\
& I=0.75 \mathrm{~A}
\end{aligned}
$$

$$
V=I R \Rightarrow R=\frac{V}{I}
$$

$$
R=\frac{6.0}{0.75}
$$

$$
R=8.0 \Omega
$$

Electromagnetism problem book page 21, questions 1 to 4.

1.12 I can solve problems involving charged particles in magnetic fields in terms of their; mass, velocity, charge, radius of their path and the magnetic induction of the magnetic field.

This is covered in section 2.4 of the Quanta and Waves Notes.

1.13 I can solve problems involving the forces acting on a current carrying wire in a magnetic field.

When a current carrying wire is placed in magnetic field there will be a force on the wire. In section 2.4 in quanta and waves the force on moving charged particles in a magnetic field was found using the relationship $F=q v B$. This can be extended to the charges moving in a wire giving the relationship below. The direction of the force on the wire can be found using the right-hand rule given in section 2.4 of quanta and waves. This must be done with the velocity direction
 given by the direction of the conventional current.

Current (A)

Force on the wire (N)

Example 1

A wire carrying a current of 6.0 A has 0.50 m of its length placed in a magnetic field of magnetic induction 0.20 T . Calculate the size of the force on the wire if it is placed:
a. at right angles to the direction of the field
b. at 45° to the direction of the field
c. along the direction of the field (i.e. lying parallel to the field lines).

Solution 2

a. When the field is at a right angle to the wire $\theta=90^{\circ}$.
$F=I l B \sin \theta$
$F=6.0 \times 0.50 \times 0.20 \times \sin 90^{\circ}=0.60 \mathrm{~N}$
b. $\quad F=6.0 \times 0.50 \times 0.20 \times \sin 45^{\circ}=0.42 \mathrm{~N}$
c. $\quad \theta=0^{\circ}, \sin 0^{\circ} 0$, so $F=0 N$

Example 2

Two wires each carrying 2.0A are placed 20 mm apart.
a. \quad Calculate the force produced on wire 2.
b. Do the wires attract or repel each other?

Solution 2

a. Use $B=\frac{\mu_{0} I}{2 \pi r}$ to find magnetic induction at wire 2.

Then use $F=I l B \sin \theta$ to find the force on the wire.

$I=2.0 \mathrm{~A}$
$r=20 \mathrm{~mm}=20 \times 10^{-3} \mathrm{~m}$

$$
\theta=90^{\circ}
$$

$$
\begin{aligned}
B & =\frac{\mu_{0} I}{2 \pi r} \\
B & =\frac{4 \pi \times 10^{-7} \times 2.0}{2 \pi \times 20 \times 10^{-3}} \\
B & =2.0 \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

$$
F=I l B \sin \theta
$$

$$
F=2.0 \times 1.2 \times 2.0 \times 10^{-5}
$$

$$
\times \sin 90^{\circ}
$$

b. Wires attract. Use the right hand rule from section 2.4 in the Quanta and Waves Notes.

Electromagnetism problem book pages 21 to 26, questions 1 to 13.

1.14 I can state comparisons between nuclear, electromagnetic and gravitational forces in terms of relative magnitude and range.

The table below compares the relative strength of the nuclear, electromagnetic and gravitational forces taking the nuclear force to have a value of 1.

Force	Relative Magnitude	Range (metres)
Strong	1	10^{-15}
Electromagnetic	10^{-3}	Infinite
Gravity	10^{-41}	Infinite

Key Area: Circuits

Success Criteria

2.1 I can describe the variation of current and potential difference with time in a CR circuit during charging and discharging.
2.2 I can define the time constant for a CR circuit and use this to and solve problems.
2.3 I can define capacitive reactance.
2.4 I can solve problems involving capacitive reactance, voltage, current frequency and capacitance.
2.5 I understand how an inductor is constructed.
2.6 I understand electromagnetic induction and the factors which affect the induction of a current in an inductor.
2.7 I can state what is meant by the self-inductance of a coil.
2.8 I know the effect of placing an iron core inside an inductor.
2.9 I understand Lenz's law and the effect back E.M.F has on the current in a circuit.
2.10 I can solve problems involving back E.M.F and the energy stored in a capacitor.
2.11 I can define inductive reactance.
2.12 I can solve problems involving inductive reactance, voltage, current frequency and inductance.

2.1 I can describe the variation of current and potential difference with time in a CR circuit during charging and discharging.

See section 4.8 and 4.9 in the Higher Physics Electricity notes
The circuit shown contains a capacitor and resistor in series. This is a CR circuit. When switch S is moved to position A the capacitor charges. When moved to position B the capacitor discharges.
The graphs of current potential difference and against time across the capacitor against time are shown below.

Charging

Discharging

Switch in position A. The capacitor is charging.
The voltage rises from zero until it reaches the e.m.f. of the battery, \mathcal{E}. The current has an initial value of $\frac{\varepsilon}{R}$ which falls towards zero.

Current is negative as it is
flowing in the opposite direction to the charging current.

Revision of higher physics capacitors
Electromagnetism problem book pages 27 to 30, questions 1 to 7.

2.2 I can define the time constant for a CR circuit and use this to and solve problems.

In a circuit containing a capacitor and resistor, the relationships which define the charging current and potential difference across a capacitor are
$I=\frac{V_{C}}{R} e^{-\frac{t}{R C}}$ and $V_{C}=V_{S}\left[1-e^{-\frac{t}{R C}}\right]$

Where
V_{s} - EMF of the supply
V_{C} - potential difference across the capacitor

You do not need to know or be able to use these relationships.
R - resistance in the circuit
I - Charging current
C - Capacitance in the circuit

The term $R C$ in these relationships is called the time constant.

Note

The t in this relationship is a constant. It is a different quantity to the variable t in the above relationships for I and V_{C}.

- A large value of time constant gives a long charging and discharging time.
- A small value of time constant give a short charging and discharging time.

The exponential relationship of the charging curves means that the time taken for the voltage to reach the EMF of the supply and the charging current to decrease to zero is not easily determined. The time constant is used to make the charging and discharging times of $C R$ circuits easy to compare.

When the capacitor is charging the time constant represents the time taken for

- the voltage across the capacitor to increase to 63% of the supply EMF.
- The current in the circuit to decrease by 63% to 37% of the initial charging current.

When the capacitor is discharging the time constant represents the time taken for

- the voltage across the capacitor to decrease by 63% to 37% of the supply EMF.
- The current in the circuit to decrease by 63% to 37% of the initial discharge current.

Example 1

You are given the following components.

$10 \mathrm{M} \Omega$ Resistor	$20 \mu \mathrm{~F}$ Capacitor
$1 \mathrm{M} \Omega$ Resistor	20 pF Capacitor
$10 \mathrm{k} \Omega$ Resistor	20 nF Capacitor

a. Which the combination of a single resistor and single capacitor in series give the longest charging time.
b. Calculate the time constant for the combination found in part a.

Solution 1

a. For the longest time the time constant, $R C$, must be have the largest value. R and C have the largest values so choose $10 \mathrm{M} \Omega$ resistor and a $20 \mu \mathrm{~F}$ capacitor.
b. $\quad t=R C$
$t=10 \times 10^{6} \times 10 \times 10^{-6}$
$t=100 \mathrm{~s}$
$t=100 \mathrm{~s}$

Example Finding the time constant from a graph

The variation of potential difference across a capacitor in a of an RC circuit as it discharges is shown below. The time constant for this circuit can be found by

- Reading the initial voltage V_{C}.
- Calculating 37% of V_{C}.
- Tracing a line from 37% of V_{C} to the graph line then down to the time axis.
- Reading the time constant value from the time axis.

Electromagnetism problem book pages 30 to 31, questions 8 to 12.

2.3 I can define capacitive reactance.

Capacitive reactance is the opposition to a.c. current by the capacitance of a capacitor.
In a circuit containing resistance only, the frequency of the supply has no effect on the current in the circuit

Ohm's Law applies to resistance only circuits
So $\mathrm{R}=\frac{V_{C}}{I}$
In a circuit containing a resistor and capacitor (an RC circuit) the current depends on the frequency of the supply.

The resistance in an RC circuit is fixed. The quantity capacitive reactance is defined to take into account the variation in current with frequency.

Capacitive Reactance (Ω)

Compare with inductive reactance in section 2.11.

Capacitive Reactance (Ω)

2.4 I can solve problems involving capacitive reactance, voltage, current frequency and capacitance.

Example 1

The circuit shown runs from the UK mains at $230 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the capacitive reactance in the circuit.

Solution 1
$f=50 \mathrm{~Hz}$
$C=30 \mathrm{mF}=30 \times 10^{-3} \mathrm{~F}$
$V=230 \mathrm{~V}$
$X_{C}=\frac{1}{2 \pi f C}$

$X_{C}=\frac{1}{2 \pi \times 50 \times 30 \times 10^{-3}}$
$X_{C}=0.11 \Omega$

Example

A circuit containing capacitive components is designed in the US to operate at 100V derived from mains 60 Hz supply. It is shipped to the UK where it is operated at 100 V derived from the main 50 Hz supply. It is found that the power output from the circuit is reduced. Explain why.

Solution

The frequency of the supply is decreased so the capacitive reactance in the circuit will be increased as $X_{C}=\frac{1}{2 \pi f C}$. As the capacitive reactance is increased the current in the circuit will decrease as $X_{C}=\frac{V}{I}$. The reduced current reduces the power output of the circuit.

Electromagnetism problem book pages 31 to 33, questions 1 to 6.

2.5 I understand how an inductor is constructed.

An inductor consists of a coil of wire which can contain and metal core

m

Symbol for an inductor without a core

\bar{m}
Symbol for an inductor with a core

The inductance of an inductor depends on

- The number of turns per metre. The greater the number of turns per meter the larger the inductance.
- Having an iron core. Inductors with an iron core have a higher inductance than an inductor without a core.

2.6 I understand electromagnetic induction and the factors which affect the induction of a current in an inductor.

Magnetic induction occurs when the movable charges in a conductor are subject to a changing magnetic field. This causes them to move producing an electrical current. The diagram below shows a magnet being moved in and out of a coil of wire. This will produce a voltage reading on the voltmeter.

The factors which affect the voltage produced are:

- The speed of the magnet. The faster the magnet the greater the rate of change of the magnetic field, the greater the induced voltage.
- The strength of the magnetic field. The greater the magnetic field the greater the voltage induced.
- Number of turns on the coil. The greater the number of turns the larger the voltage produced.
- Direction of the magnet field. Reversing the magnet reverses the polarity of the voltage.
- Direction of motion. Reversing the direction of motion of the magnet reverses the polarity of the voltage.

2.7 I can state what is meant by the self-inductance of a coil.

When current passes through a wire, a magnetic field is produced (see section 1.10). When formed into an inductor coil the magnetic field shown is produced. When connected to an a.c. supply, the magnetic field produced by the coil will alternate along with the flow of current.
The alternating magnetic field produced by the inductor coil induces E.M.F in the coil. This is selfinductance.

a.c. supply

2.8 I know the effect of placing an iron core inside an inductor.

Placing an iron core within the inductor increases the magnetic field produced. The iron core is within the magnetic field produced by the inductor coil. The makes the core a magnet (See section 1.9) which increases the magnetic induction. The increased magnetic induction produces a greater back E.M.F.

Electromagnetism problem book page 34, questions 1 and 2.

2.9 I understand Lenz's law and the effect back E.M.F has on the current in a circuit.

Lenz's law states that the E.M.F produced by self inductance will oppose the current which produced it. The E.M.F produced by self inductance is called back E.M.F.

To see the effect of self inductance and back E.M.F. compare the circuits below with and without an inductor.

Comparing a large inductance to a small inductance

The larger the inductance of an inductor the greater its effect on a changing current in a circuit.

2.10 I can solve problems involving back E.M.F and the energy stored in a capacitor.

The back E.M.F. produced by an inductor is given by

Note that the back E.M.F depends on the rate of change of current rather than current. This means that a rapidly changing current, e.g. suddenly switching a circuit off, can produce a much larger back E.M.F. than the supply E.M.F.

The energy stored in an inductor is given by

Example 1

An inductor is connected to a 6.0 V d.c. supply which has a negligible internal resistance. The inductor has a resistance of 0.80Ω. When the circuit is switched on it is observed that the current increases gradually. The rate of growth of the current is $200 \mathrm{As}^{-1}$ when the current in the circuit is 4.0 A .

a. Calculate the induced e.m.f. across the coil when the current is 4.0 A .
b. Hence calculate the inductance of the coil.
c. Calculate the energy stored in the inductor when the current is 4.0 A .
d.i. When is the energy stored by the inductor a maximum?
ii. What value does the current have at this time?

Solution 1

a. Potential difference across the resistive element of the circuit
$V=I R$
$V=4.0 \times 0.80=3.2 \mathrm{~V}$
Thus p.d. across the inductor $=6.0-3.2=2.8 \mathrm{~V}$
b. Using
$\epsilon=-L \frac{d I}{d t}$
$L=\frac{\epsilon}{\left(\frac{d I}{d t}\right)}$
$L=\frac{2.8}{200}=0.014 \mathrm{H}$
c. $\quad E=\frac{1}{2} L I^{2}$
$E=\frac{1}{2} \times 0.014 \times 4.0^{2}=0.11 \mathrm{~J}$
d.i. The energy will be a maximum when the current reaches a maximum steady value.
ii. $\quad I_{\max }=\frac{V}{R}=\frac{6.0}{0.8}=7.5 \mathrm{~A}$

Electromagnetism problem book pages 34 to 38, questions 3 to 8.

2.11 I can define inductive reactance.

Inductive reactance is the opposition to current by the inductance of an inductor.
In a circuit containing resistance only the frequency of the supply has no effect on the current in the circuit

Current ${ }_{\text {Frequency }}$

Ohm's Law applies to resistance only circuits
So $\mathrm{R}=\frac{V_{C}}{I}$
With an inductor in a circuit the current depends on the frequency of the supply.

Current $\underbrace{\text { (}}_{\text {Frequency }}$

The resistance in an inductive circuit is fixed. The quantity inductive reactance is defined to take into account the variation in current with frequency.

Voltage across the inductor (V)
Inductive Reactance (Ω)

Compare with capacitive reactance in section 2.3

Inductive Reactance (Ω)

Supply frequency (Hz)

2.12 I can solve problems involving inductive reactance, voltage, current frequency and inductance.

Example

An inductor has an inductance of 0.03 H . It is connected in a a.c. circuit of 12 V 50 Hz .
a. Calculate the reactance of the of the inductor.
b. Calculate the R.M.S current in the circuit.
c. The frequency of the circuit is increased to 100 Hz . State what happens to the current in the circuit when the frequency is increased.

Solution
a. $\quad X_{L}=2 \pi f L$
$X_{L}=2 \pi \times 50 \times 0.03$
$X_{L}=9.4 \Omega(9.42 \Omega)$
b. $\quad X_{L}=\frac{V}{I} \Rightarrow I=\frac{V}{X_{L}}$
$I=\frac{12}{9.42}$
$I=1.3 \mathrm{~A}$
c. Current decreases.

Electromagnetism problem book pages 38 to 41, questions 1 to 7.

Key Area: Electromagnetic Radiation

Success Criteria

3.1 I know that electricity and magnetism are linked in electromagnetic radiation.
3.2 I understand that electromagnetic radiation is made up of an electric and magnetic field.
3.3 I can solve problems involving the speed of light, the permittivity of free space and the permeability of free space.

3.1 I know that electricity and magnetism are linked in electromagnetic radiation.

When a charged particle is accelerated the electric field lines surrounding the particle is distorted. This distortion propagates out from the charge at the speed of light. This is the electric field component of electromagnetic radiation. As a changing electric field produces a magnetic field the propagating electric field also produces a propagating magnetic field.

Stationary Electrical
 Charge

3.2 I understand that electromagnetic radiation is made up of an electric and magnetic field.

Electromagnetic radiation consists of two fields; an electric field and a perpendicular magnetic field. These two fields propagate in phase through space as oscillating waves in a direction perpendicular to both fields. The changing electric field induces a changing magnetic field and the changing magnetic field produces a changing electric field.

3.3 I can solve problems involving the speed of light, the permittivity of free space and the permeability of free space.

The electric and magnetic properties of space are related to the speed of light by the relationship

Example
Calculate the speed of light using the relationship

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}
$$

Solution

$$
\begin{aligned}
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{Fm}^{-1} \\
& \epsilon_{0}=8.85 \times 10^{-12} \mathrm{Hm}^{-1} \\
& c=\frac{1}{\sqrt{8.85 \times 10^{-12} \times 4 \pi \times 10^{-7}}} \\
& c=3.0 \times 10^{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

Electromagnetism problem book pages 41 and 42, questions 1 to 4.

Current, Mathematics and Right Hand Rules

This section is background. You will not be examined on this material.

Current

Current is the flow of electrical charges. These charges can be electrons in metals, electrons and holes in semiconductors, ions in solutions or protons in particle accelerators. These can carry a negative charge (electrons, ions) or positive charges (holes, ions, protons).

Defining the direction of current is arbitrary as charges can flow either direction. The direction of conventional current is defined as the direction positive charges would move in a circuit.
When dealing with electrical or electronic circuits conventional current rather than electron flow is normally used. This can be see with electronic components that are labelled with arrows. These arrows point in the direction of the conventional current. The triangles in LED and diode symbols also point in the direction of conventional current when forward biased.

Mathematics and Right Hand Rules

Cartesian axes used in mathematics and the sciences are always right-hand axes. This is an arbitrary choice. It is however the universal choice of axes. For consistency, right hand axes and right hand rules are used in all the notes in the Advanced Higher Physics course.

You will occasionally come across left-hand rules for the Lorentz Force and the directions of magnetic fields. These rules are not wrong and if done correctly will give the same results as the right hand rules. If you use these left hand rules bear in mind that they are not consistent with the vector mathematics used in physics, engineering.

Right Hand Rule for Magnetic Force

Right hand axes are used to define the direction of a vector product of two vectors. This is important when finding the direction of the force on a charged particle caused by a magnetic field.
The magnitude of the magnetic force is given by $F=q v B$. This is a simplified scalar version of the Lorentz Force relationship;
$\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}) \quad$ Where: $\boldsymbol{F}, \boldsymbol{E}$ and \boldsymbol{B} are vectors and the \times symbol is the vector cross product.

The direction of the resultant force vector is defined using right hand axes.

Right Hand Rule for Magnetic Induction Around a Wire

Finding the direction of the magnetic field is around a current carrying wire is also defined by a right hand rule (see section 1.11) which uses conventional current.

Quantities, Units and Multiplication Factors

Quantity	Quantity Symbol	Unit	Unit Abbreviation
capacitance	C	Farad	F
capacitive reactance	X_{C}	Ohm	Ω
charge	Q	coulomb	C
current	I	Ampere	A
displacement	$y, \mathrm{~s}$	metre	m
E.M.F.	ϵ	Volt	V
electric field strength	E	Newton per coulomb	$\mathrm{NC}^{-1} \mathrm{or} \mathrm{Vm}^{-1}$
energy	E	Joule	J
force	F	newton	N
frequency	f	hertz	Hz
inductance	L	Henry	H
inductive reactance	X_{L}	Ohm	Ω
magnetic induction	B	Tesla	T
mass	m	kilogram	kg
momentum	p	kilogram metre per	$\mathrm{kgms} \mathrm{N}^{-1}$
radius/distance	r	second	m
resistance	R, r	metre	Ω
speed/velocity	v	Ohm	metre per second
time	t	second	$\mathrm{ms}{ }^{-1}$
voltage/Potential difference	V	Volt	s
wavelength	λ	metre	V
work done	E_{w}	Joule	J

Prefix Name	Prefix Symbol	Multiplication Factor
Pico	p	$\times 10^{-12}$
Nano	n	$\times 10^{-9}$
Micro	μ	$\times 10^{-6}$
Milli	m	$\times 10^{-3}$
Kilo	k	$\times 10^{3}$
Mega	M	$\times 10^{6}$
Giga	G	$\times 10^{9}$
Tera	T	$\times 10^{12}$

You will not be given the tables on this page in any of the tests or the final exam

$v=\frac{d s}{d t}$	$L=I \omega$
$a=\frac{d v}{x}=\frac{d^{2} s}{v^{2}}$	$E_{K}=\frac{1}{2} I \omega^{2}$
$\overline{d t}=\overline{d t^{2}}$	$F=G \frac{M m}{r^{2}}$
$s=u t+\frac{1}{2} a t^{2}$	$V=-\frac{G M}{r}$
$\nu^{2}=u^{2}+2 a s$	$v=\sqrt{\frac{2 G M}{r}}$
$\omega=\frac{d \theta}{d t}$	apparent brightness,
$\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$	Power per unit area $=$
$\omega=\omega_{o}+\alpha t$	$L=4 \pi r^{2} \sigma T^{4}$
$\theta=\omega_{o} t+\frac{1}{2} \alpha t^{2}$	$r_{\text {Schwarzschild }}=\frac{2 G M}{c^{2}}$
$\omega^{2}=\omega_{o}{ }^{2}+2 \alpha \theta$	$E=h f$
$s=r \theta$	$\lambda=\frac{h}{p}$
$\begin{aligned} & v=r \omega \\ & a_{t}=r \alpha \end{aligned}$	$m v r=\frac{n h}{2 \pi}$
$a_{r}=\frac{v^{2}}{r}=r \omega^{2}$	$\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}$
$F=\frac{m \nu^{2}}{r}=m r \omega^{2}$	$\Delta E \Delta t \geq \frac{h}{4 \pi}$
$T=F r$	$F=q v B$
$T=I \alpha$	$\omega=2 \pi f$
$L=m v r=m r^{2} \omega$	$a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y$

$L=I \omega$
$E_{K}=\frac{1}{2} I \omega^{2}$
$F=G \frac{M m}{r^{2}}$
$V=-\frac{G M}{r}$
$v=\sqrt{\frac{2 G M}{r}}$
apparent brightness, $b=\frac{L}{4 \pi r^{2}}$
Power per unit area $=\sigma T^{4}$
$L=4 \pi r^{2} \sigma T^{4}$
$r_{\text {Schwarzschild }}=\frac{2 G M}{c^{2}}$
$E=h f$
$\lambda=\frac{h}{p}$
$m v r=\frac{n h}{2 \pi}$
$\Delta x \Delta p_{x} \geq \frac{h}{4 \pi}$
$\Delta E \Delta t \geq \frac{h}{4 \pi}$
$F=q v B$
$\omega=2 \pi f$
$a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y$
$y=A \cos \omega t \quad$ or $\quad y=A \sin \omega t$

$$
c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{o}}}
$$

$\nu= \pm \omega \sqrt{\left(A^{2}-y^{2}\right)}$
$t=R C$
$E_{K}=\frac{1}{2} m \omega^{2}\left(A^{2}-y^{2}\right)$
$X_{C}=\frac{V}{I}$
$E_{P}=\frac{1}{2} m \omega^{2} y^{2}$
$X_{C}=\frac{1}{2 \pi f C}$
$y=A \sin 2 \pi\left(f t-\frac{x}{\lambda}\right)$
$\varepsilon=-L \frac{d I}{d t}$
$E=k A^{2}$
$\phi=\frac{2 \pi x}{\lambda}$
$E=\frac{1}{2} L I^{2}$
optical path difference $=m \lambda$ or $\left(m+\frac{1}{2}\right) \lambda$
$X_{L}=\frac{V}{I}$
where $m=0,1,2 \ldots$.
$\Delta x=\frac{\lambda l}{2 d}$
$\frac{\Delta W}{W}=\sqrt{\left(\frac{\Delta X}{X}\right)^{2}+\left(\frac{\Delta Y}{Y}\right)^{2}+\left(\frac{\Delta Z}{Z}\right)^{2}}$
$d=\frac{\lambda}{4 n}$
$\Delta W=\sqrt{\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}}$
$\Delta x=\frac{\lambda D}{d}$
$n=\tan i_{P}$
$F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
$E=\frac{Q}{4 \pi \varepsilon_{o} r^{2}}$
$V=\frac{Q}{4 \pi \varepsilon_{o} r}$
$F=Q E$
$V=E d$
$F=I l B \sin \theta$
$B=\frac{\mu_{o} I}{2 \pi r}$
$d=\bar{v} t$
$E_{W}=Q V$
$V_{\text {peak }}=\sqrt{2} V_{r m s}$
$s=\bar{v} t$
$E=m c^{2}$
$I_{\text {peak }}=\sqrt{2} I_{r m s}$
$v=u+a t$
$E=h f$
$Q=I t$
$s=u t+\frac{1}{2} a t^{2}$
$E_{K}=h f-h f_{0}$
$V=I R$
$v^{2}=u^{2}+2 a s$
$E_{2}-E_{1}=h f$
$P=I V=I^{2} R=\frac{V^{2}}{R}$
$s=\frac{1}{2}(u+v) t$
$W=m g$
$v=f \lambda$
$R_{T}=R_{1}+R_{2}+\ldots$.
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$.
$F=m a$
$E_{W}=F d$
$E_{P}=m g h$
$E_{K}=\frac{1}{2} m v^{2}$
$d \sin \theta=m \lambda$
$E=V+I r$
$n=\frac{\sin \theta_{1}}{\sin \theta_{2}}$
$V_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) V_{S}$
$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{v_{1}}{v_{2}}$
$\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$
$\sin \theta_{c}=\frac{1}{n}$
$C=\frac{Q}{V}$
$I=\frac{k}{d^{2}}$
$E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$
$I=\frac{P}{A}$
path difference $=m \lambda$ or $\left(m+\frac{1}{2}\right) \lambda$ where $m=0,1,2 \ldots$
random uncertainty $=\frac{\max . \text { value }-\min . \text { value }}{\text { number of values }}$

Additional Relationships

Circle

circumference $=2 \pi r$
area $=\pi r^{2}$

Sphere

area $=4 \pi r^{2}$
volume $=\frac{4}{3} \pi r^{3}$

Trigonometry

$\sin \boldsymbol{\theta}=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$

Moment of inertia

point mass
$I=m r^{2}$
rod about centre
$I=\frac{1}{12} m l^{2}$
rod about end
$I=\frac{1}{3} m l^{2}$
disc about centre
$I=\frac{1}{2} m r^{2}$
sphere about centre
$I=\frac{2}{5} m r^{2}$

Table of standard derivatives

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

Electron Arrangements of Elements

$\begin{aligned} & \text { O} \\ & \text { 흔 } \end{aligned}$	E				B－	¢ ¢ ¢ ¢ ¢ ¢ ¢
O.	8	$\infty 0 \stackrel{0}{\sim}$				
$\begin{aligned} & \text { O. } \\ & \text { 은 } \end{aligned}$	©					∞ ¢
$\begin{aligned} & \text { O} \\ & \text { 흔 } \end{aligned}$	E					
은m	包					

密

E	\％		\&	
E				
8				
9				
¢	¢			¢
ε				
6	$\therefore \text { U }$			
a			\cdots ¢	\％
）				
क	$\approx \dot{\sim}$			$28{ }^{\text {a }}$

$\begin{aligned} & \text { 은 N } \\ & \text { 은 } \end{aligned}$	ब						\％
$\frac{\text { 은 }}{\text { 운 }}$		－コこ				約 $\chi^{\substack{\text { c }}}$	¢

Quantity	Symbol	Value	Quantity	Symbol	Value
Gravitational acceleration on Earth Radius of Earth Mass of Earth Mass of Moon Radius of Moon Mean Radius of Moon Orbit Solar radius Mass of Sun 1 AU Stefan-Boltzmann constant Universal constant of gravitation	g R_{E} M_{E} $M_{\text {M }}$ $R_{\text {M }}$ σ G	$\begin{aligned} & 9.8 \mathrm{~m} \mathrm{~s}^{-2} \\ & 6.4 \times 10^{6} \mathrm{~m} \\ & 6 \cdot 0 \times 10^{24} \mathrm{~kg} \\ & 7.3 \times 10^{22} \mathrm{~kg} \\ & 1.7 \times 10^{6} \mathrm{~m} \\ & \\ & 3.84 \times 10^{8} \mathrm{~m} \\ & 6.955 \times 10^{8} \mathrm{~m} \\ & 2 \cdot 0 \times 10^{33} \mathrm{~kg} \\ & 1.5 \times 10^{11} \mathrm{~m} \\ & 5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\ & 6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \end{aligned}$	Mass of electron Charge on electron Mass of neutron Mass of proton Mass of alpha particle Charge on alpha particle Planck's constant Permittivity of free space Permeability of free space Speed of light in vacuum Speed of sound in air	m_{e} e m_{n} m_{p} m_{α} h ε_{0} μ_{0} c v	$\begin{aligned} & 9.11 \times 10^{-31} \mathrm{~kg} \\ & -1.60 \times 10^{-19} \mathrm{C} \\ & 1.675 \times 10^{-27} \mathrm{~kg} \\ & 1.673 \times 10^{-27} \mathrm{~kg} \\ & 6.645 \times 10^{-27} \mathrm{~kg} \\ & 3.20 \times 10^{-19} \mathrm{C} \\ & 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & 8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\ & 3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\ & 3.4 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Glycerol	1.47
Glass	1.51	Water	1.33
Ice	1.31	Air	1.00
Perspex	1.49	Magnesium Fluoride	1.38

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
				Lasers	
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide	$\left.\begin{array}{r} 9550 \\ 10590 \end{array}\right\}$	
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/ $\mathrm{kg} \mathrm{m}^{-3}$	Melting Point/ K	Boiling Point/K	Specific Heat Capacity/ $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-}$	Specific Latent Heat of Fusion/ Jkg^{-1}	Specific Latent Heat of Vaporisation/ J kg ${ }^{-1}$
Aluminium	2.70×10^{3}	933	2623	9.02×10^{2}	3.95×10^{5}	
Copper	8.96×10^{3}	1357	2853	3.86×10^{2}	2.05×10^{5}	. . .
Glass	2.60×10^{3}	1400	. . .	6.70×10^{2}		
Ice	9.20×10^{2}	273		2.10×10^{3}	3.34×10^{5}	
Glycerol	1.26×10^{3}	291	563	2.43×10^{3}	1.81×10^{5}	8.30×10^{5}
Methanol	7.91×10^{2}	175	338	2.52×10^{3}	9.9×10^{4}	1.12×10^{6}
Sea Water	1.02×10^{3}	264	377	3.93×10^{3}		
Water	1.00×10^{3}	273	373	$4 \cdot 19 \times 10^{3}$	$3 \cdot 34 \times 10^{5}$	$2 \cdot 26 \times 10^{6}$
Air	1.29
Hydrogen	$9 \cdot 0 \times 10^{-2}$	14	20	1.43×10^{4}		4.50×10^{5}
Nitrogen	1.25	63	77	1.04×10^{3}	. .	2.00×10^{5}
Oxygen	$1 \cdot 43$	55	90	9.18×10^{2}		$2 \cdot 40 \times 10^{4}$

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

