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Key Area: Kinematic Relationships 
 
Previous Knowledge 
 

 Know what is meant by the vector terms displacement, velocity and acceleration. 

 Know the symbols and units for displacement, velocity and acceleration. 

 Know that kinematics is the study of motion without reference to its causes. 

 Know and can use notation for differentiation and integration. 

 Know how to find first and second derivatives with respect to time. 

 Know how to find indefinite and definite integrals. 
 

Success Criteria 
 
1.1 I can derive the kinematic equations of motion using calculus methods. 
 
1.2 I can use calculus to calculate; instantaneous displacement, velocity and acceleration 

for straight line motion with constant or varying acceleration. 
 
1.3 I can interpret graphs of motion for objects moving in a straight line. 
 
1.4 I can calculate displacement, velocity and acceleration from a graph. 
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1.1 I can derive the kinematic equations of motion using calculus methods. 
 
Calculus Review and Notation 
 
𝒇(𝒕) means function f is a function of the variable t.   
 
e.g. 𝑓(𝑡) = 𝑎𝑡 + 𝑏𝑡2  where a and b are constants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

When the function 𝑓(𝑡) is drawn on a graph, integration gives the area between the 

function and the horizontal axis. 

 

 

  

 
 
 

The kinematic relationships 𝑣 = 𝑢 + 𝑎𝑡 and 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 can be derived using calculus 

from the definitions of velocity and acceleration. 

These kinematic relationships assume that the acceleration is constant.  Varying 

acceleration is dealt with in section 1.2.  The other kinematic relationship 𝑣2 = 𝑢2 + 2𝑎𝑠 

can be derived from the above two relationships. 

𝒅𝒇

𝒅𝒕
 is the first derivative of the function 𝑓(𝑡) and gives the gradient of this function.   

This is sometimes written as 𝑓′(𝑡) or 𝑓 . 

𝑑𝑓

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑓(𝑡)) =

𝑑

𝑑𝑡
(𝑎𝑡 + 𝑏𝑡2) = 𝑎 + 2𝑏𝑡 e.g. 

𝑑

𝑑𝑡
 𝑓(𝑡)  

This is an instruction which means 
differentiate the function 𝑓(𝑡). 

𝒅𝟐𝒇

𝒅𝒕𝟐
 is the second derivative of the function 𝑓(𝑡).  It gives the gradient of the first derivative        . 

This is sometimes written as 𝑓′′(𝑡) or 𝑓 . 

𝑑2𝑓

𝑑𝑡2
=

𝑑

𝑑𝑡
 
𝑑𝑓

𝑑𝑡
 =

𝑑

𝑑𝑡
(𝑎 + 2𝑏𝑡) = 2𝑏 e.g. 

 𝒇(𝒕)𝒅𝒕 is an indefinite integral.  This means integrate the function 𝑓(𝑡). 

 (𝑎𝑡 + 𝑏𝑡2)𝑑𝑡 =
1

2
𝑎𝑡2 +

1

3
𝑏𝑡3 + 𝑐 e.g. 

 𝒇(𝒕)𝒅𝒕
𝒆

𝒅

 
is a definite integral.  This means integrate the function 𝑓(𝑡) and evaluate it 
between the limits d and e as shown. 

 3𝑡
1

0

𝑑𝑡 =  
3

2
𝑡2 

0

1

=  
3

2
× 12 −  

3

2
× 02 = 1.5 e.g. 

𝑑𝑓

𝑑𝑡
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Definition of Velocity 
 
Velocity is defined as 

𝑣 =
𝑑𝑠

𝑑𝑡
 

 
i.e. velocity is the gradient of the displacement time graph. 
 
 
Definition of Acceleration 
 
Acceleration is defined as 

𝑎 =
𝑑𝑣

𝑑𝑡
=
𝑑2𝑠

𝑑𝑡2
 

 
i.e. acceleration is the gradient of the velocity time graph. 
 
 
Deriving 𝒗 = 𝒖 + 𝒂𝒕 
 
Acceleration is constant for the kinematic equations 

𝑑𝑣

𝑑𝑡
= 𝑎 

Integrating this with respect to time 

 
𝑑𝑣

𝑑𝑡
. 𝑑𝑡 = ∫ 𝑎. 𝑑𝑡 

 𝑣 = 𝑎𝑡 + 𝑐  where c is a constant 

At 𝑡 = 0  the initial velocity is 𝑢.  This can be substituted in the above relationship. 

 𝑢 = 𝑎 × 0 + 𝑐 

 𝑐 = 𝑢 

So 𝑣 = 𝑢 + 𝑎𝑡 

 
  

Time 

D
is

p
la

ce
m

en
t 

𝑣 = gradient 

Time 

V
el

o
ci

ty
 

𝑎 = gradient 
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Deriving 𝒔 = 𝒖𝒕 +
𝟏

𝟐
𝒂𝒕𝟐 

From the definition of velocity 

𝑣 =
𝑑𝑠

𝑑𝑡
= 𝑢 + 𝑎𝑡 

Integrating this with respect to time 

 
𝑑𝑠

𝑑𝑡
. 𝑑𝑡 =  (𝑢 + 𝑎𝑡)𝑑𝑡 

 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 + 𝑐 

At 𝑡 = 0 the initial displacement is 𝑠 = 0.  This can be substituted into the above 

relationship. 

 𝑠 = 𝑢 × 0 +
1

2
𝑎 × 02 + 𝑐 

 𝑐 = 0 

So  𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 

 
Deriving 𝒗𝟐 = 𝒖𝟐 + 𝟐𝒂𝒔 
Taking  𝑣 = 𝑢 + 𝑎𝑡 and squaring both sides gives the   

𝑣2 = (𝑢 + 𝑎𝑡)2 = 𝑢2 + 2𝑢𝑎𝑡 + 𝑎2𝑡2 

 Taking a factor 2a from the last two terms gives 

 𝑣2 = 𝑢2 + 2𝑎 (𝑢𝑡 +
1

2
𝑎𝑡2) 

The term is brackets is the displacement, 𝑠. This leaves 

 𝑣2 = 𝑢2 + 2𝑎𝑠 
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1.2 I can use calculus to calculate; instantaneous displacement, velocity 
and acceleration for straight line motion with constant or varying 
acceleration. 

 
Differentiation Example 
 
The displacement of an object after t seconds is given by 𝑠 = 3 + 9.8𝑡2 

a. Using calculus find an expression for the velocity of the object. 

b. Find the velocity of the object at 4.0s. 

c. Show that the acceleration of the object is constant. 

 
Differentiation Solution 
 

a.        As 𝑣 =
𝑑𝑠

𝑑𝑡
 differentiate  𝑠 = 3 + 9.8𝑡2 to find the expression for velocity. 

𝑣 =
𝑑

𝑑𝑡
(3 + 9.8𝑡2) 

 𝑣 = 19.6𝑡 

b. When 𝑡 = 4.0s 

 𝑣 = 19.6 × 4.0 

 𝑣 = 78.4ms−1 

 

c.           𝑎 =
𝑑𝑣

𝑑𝑡
 differentiate 𝑣 = 19.6𝑡 to find the expression for acceleration. 

𝑎 =
𝑑

𝑑𝑡
(19.6𝑡) 

 𝑎 = 19.6ms−2  Which is a constant. 

 
RMA Question Book Pages 4 and 5 Questions 1 to 7. 
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Integration Example 

An object is dropped at 𝑡 = 0s from a height of 100m and accelerates down at 9.8ms−2. 

a. Using calculus find an expression for the velocity of the object. 

b. Using calculus find an expression for the displacement of the object. 

Integration Solution 

a. 𝑎 = −9.8ms−1 

From the definition of acceleration 𝑎 =
𝑑𝑣

𝑑𝑡
 

𝑑𝑣

𝑑𝑡
= −9.8 

Integrating with respect to time gives 

 
𝑑𝑣

𝑑𝑡
𝑑𝑡 =  −9.8𝑑𝑡 

 𝑣 = −9.8𝑡 + 𝑐 

As the object is dropped from rest at 𝑡 = 0s 

 0 = −9.8 × 0 + 𝑐 Where c is a constant. 

So 𝑣 = −9.8𝑡 

 

b.          From the definition of velocity 𝑣 =
𝑑𝑠

𝑑𝑡
 

𝑑𝑠

𝑑𝑡
= −9.8𝑡 

Integrating with respect to time gives 

 
𝑑𝑠

𝑑𝑡
𝑑𝑡 =  −9.8𝑡 𝑑𝑡 

 𝑠 = −
1

2
× 9.8𝑡2 + 𝑑 Where d is a constant. 

 𝑠 = −4.9𝑡2 + 𝑑 

As the object is dropped from 𝑠 = 100m at 𝑡 = 0s 

 100 = −4.9 × (0)2 + 𝑑 

Which give 𝑑 = 100m 

So 𝑠 = 100 − 4.9𝑡2 

 

RMA Question Book Page 5 Questions 8 and 9. 
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1.3 I can interpret graphs of motion for objects moving in a straight line 
The displacement time graph below shows how a stationary, a constant velocity and an 
accelerating object would appear. 
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acceleration.  

Increasing velocity with an upward 
curved line means an increasing 
acceleration. 
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1.4 I can calculate displacement, velocity and acceleration from a graph 
 
The velocity of an object can be obtained from the gradient of its displacement-time graph. 
 
Example 
The graph below shows the displacement time graph of an object.  Find 
a. Its velocity at 1s. 
b. Its velocity a 6s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 
 
a. At 1 second the velocity is given by the gradient of the straight line section of the graph 

between 0s and 3s. 
 

𝑣 = gradient =
y2 − y1
𝑥2 − 𝑥1

=
20 − 50

3 − 0
= −10ms−1 

 
b. At 6 seconds the graph is curved.  To find the velocity find the gradient of the tangent to 

the curve at 6s. 
 

 𝑣 = gradient of tangent =
y2 − y1
𝑥2 − 𝑥1

=
47 − 21

7.4 − 4.6
= 9.3ms−1 
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The displacement and acceleration of an object can be obtained from its velocity time 
graph. 
 

 Displacement is obtained by finding the area between the line on the graph and the 
time axis. 

 Acceleration is given by the gradient of the line. 
 
Example 
The velocity-time graph shown below shows the motion of an object between 0s and 8s.  
Find 
a. Its acceleration at 5s 
b. Its displacement at 3s. 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 
a. The acceleration is given by the gradient of the tangent to the curve at 5s. 
 

𝑎 = gradient of tangent =
y2 − y1
𝑥2 − 𝑥1

 

 

𝑎 =
3.0 − 1.8

6.6 − 3.6
= 0.4ms−2 

 
b. 
The displacement is given by the 
area under the curve.  This can be 
done by counting the number of 
whole boxes and adding the half the 
number of partial boxes. 
 

𝑠 = 16 +  
1

2
× 15 = 23.5m 

 
 
 
 
 
RMA Question Book Page 6 Questions 10 and 11. 
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Key Area: Angular Motion 
 

Success Criteria 
 

2.1 I can use the radian as a measure of angular displacement. 
 
2.2 I can convert between degrees and radians. 
 
2.3 I can perform calculations involving angular displacement, angular velocity, angular 

acceleration and revolutions per minute. 
 
2.4 I can solve problems involving angular velocity, period of rotation and tangential 

velocity. 
 
2.5 I understand the terms angular acceleration, tangential acceleration and radial 

(centripetal) acceleration and the relationship between them. 
 

2.6        I can derive the relatationships 𝑎𝑟 =
𝑣2

𝑟
 and 𝑎𝑟 = 𝑟𝜔2 for the radial 

  acceleration of a rotating object. 
 
2.7 I can carry out calculations involving centripetal acceleration and centripetal force. 
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2.1 I can use the radian as a measure of angular displacement. 
 

Definition of the radian 

Given a circle with radius r where the angle 𝜃 subtends 

and arc of length s. 

The definition of the radian is given by 

𝜃 =
𝑠

𝑟
 

 

 

 

The relationship between radians and degrees 

 

For a full circle  

𝑠 = circmferance = 2𝜋𝑟 

 

Angle in radians 
𝑠

𝑟
=
2𝜋𝑟

𝑟
= 2𝜋 radians 

 

Angle in degrees 360° 

 

So     1° =
2𝜋

360°
 radians or 

𝜋

180°
 radians 

 

 
  

𝜃   

s 
r 

𝑠 = 2𝜋𝑟 
r 

θ   

Note 

All angles used in the rotational motion relationships in Advanced Higher Physics 

should be converted to radians. 



13 | P a g e  
Version 1.0 

2.2 I can convert between degrees and radians. 
 

Converting from degrees ⟺ radians 

To convert degrees to radians multiply by  
𝜋

180
 

 

To convert radians to degrees multiply by  
180

𝜋
 

 

 

Example 

Convert 
a. 45° to radians. 
b.  1.0 radian to degrees. 
 

Solution 

a.          45 ×
π

180
=
π

4
 rad = 0.79 rad 

b.           1.0 ×
180

π
= 57° 

 

RMA Question Book Page 7 Questions 1 and 2 
 

  

Note on units 

Angles measured in degrees have the unit symbol °   e.g. 45°  

Angles measured in radians have no units.  For clarity angles in radians are usually 

followed by either “rad” or “radians”.   e.g.  1.3 rad or 1.3 radians. 



14 | P a g e  
Version 1.0 

2.3 I can perform calculations involving angular displacement, angular 
velocity, angular acceleration and revolutions per minute. 

 

Rotational motion is described using rotational quantities in a similar way to the linear 
quantities used in the kinematic equations. 
 

Linear 

Quantity 
Symbol Linear Units 

Rotational 

Quantity 
Symbol 

Rotational 

Units 

Displacement s 
Metres 

 (m) 

Angular 

displacement 
𝜃 

Radians 

(rad) 

Velocity u, v 

Metres per 

second 

(ms-1) 

Angular  

velocity 
𝜔0, 𝜔  

Radians per 

second 

(rad s-1) 

Acceleration a 

Meters per 

second 

squared 

(ms-2) 

Angular  

acceleration 
𝛼  

Radians per 

second 

squared,  

(rad s-2) 

Time t 
Seconds 

(s) 
Time t 

Seconds 

(s) 

 

The definitions of angular velocity and angular acceleration take the same form as those for 

linear velocity and linear acceleration. 

 

Definition of linear velocity  𝑣 =
𝑑𝑠

𝑑𝑡
  

Definition of angular velocity  𝜔 =
𝑑𝜃

𝑑𝑡
 

 

Definition of linear acceleration 𝑎 =
𝑑𝑣

𝑑𝑡
=
𝑑2𝑠

𝑑𝑡2
 

Definition of angular acceleration 𝛼 =
𝑑𝜔

𝑑𝑡
=
𝑑2𝜃

𝑑𝑡2
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The rotational kinematic relationships derived from these definitions will take the same 
form as the linear kinematic relationships (suvat relationships). 
 

Linear Kinematic 

Relationship 

Rotational 

Kinematic 

Relationship 

 

𝑣 =
𝑠

𝑡
 𝜔 =

𝜃

𝑡
 

These two relationships are for constant 

linear/angular velocity.  They are not on the 

relationship sheet 

𝑣 = 𝑢 + 𝑎𝑡 𝜔 = 𝜔0 + 𝛼𝑡  

𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 𝜃 = 𝜔0𝑡 +

1

2
𝛼𝑡2 

 

𝑣2 = 𝑢2 + 2𝑎𝑠 𝜔2 = 𝜔0
2 + 2𝛼𝜃  

 

These rotational kinematic relationships can be used to solve problems of rotational motion. 

 

Converting between revolutions per minute (rpm) and radians per second 

 
Consider an object rotating at 1 rpm.  As it completes one full 

revolution it moves through 2𝜋 radians in 60 seconds. 

 

1 rpm =
2π

60
 rad s−1 

 
 

To convert from revolutions per minute to radians per second multiply by 
2π

60
 

 

To convert from radians per second to revolutions per minute multiply by 
60

2π
 

 
 
Example 
A car’s wheels rotate through 600 radians in 10 seconds.  Calculate their angular velocity. 
 
Solution 
𝜃 = 600 radians 
𝑡 = 10s 
 

𝜔 =
𝜃

𝑡
 

𝜔 =
600

10
= 60 rad s−1 

 

  

2π radians 
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Example 

The crankshaft in a car engine rotates at 2000rpm.  Calculate the angular velocity of the 

crankshaft. 

 

Solution 

1 rpm =
2π

60
 rad s−1 

2000rpm =
2π

60
× 2000 = 209.4 rad s−1  (209.44 rad s−1) 

 

Example 

The car engine now increases its angular velocity to 6000rpm in 1.2s. 

a. Calculate the angular acceleration of the crankshaft. 

b. How many revolutions does the engine takes during the 1.2s acceleration? 

 

Solution 

a. 

𝜔0 = 209.44 rad s−1 

𝑡 = 1.2s 

 

 

b.  

𝜔2 = 𝜔0
2 + 2𝛼𝜃  ⟹     𝜃 =

𝜔2 − 𝜔2

2𝛼
 

𝜃 =
628.322 − 209.442

2 × 349.07
 

𝜃 = 500 rad   (502.65 rad) 

To convert to number or rotations divide by 2𝜋  

Number of revolutions =
502.65

2π
= 80 revolutions 

 

RMA Question Book pages 7 to 9 questions 3, 6 to 9. 
 

  

𝜔 = 6000 rpm =
2π

60
× 6000 = 628.32  rad s−1 

𝜔 = 𝜔0 + 𝛼𝑡   ⟹   𝛼 =
𝜔 −𝜔0

𝑡
 

𝛼 =
628.32 − 209.44

1.2
= 350 rad s−2   (349.067 rad s−2) 

 



17 | P a g e  
Version 1.0 

2.4 I can solve problems involving angular velocity, period of rotation and 
tangential velocity. 

 
Tangential velocity is the velocity in meters per second of the point on the rotating object 
being considered.   E.g. in the diagram below of ball being swung around by a string the 
tangential velocity is the linear velocity the ball would have the instant the string was cut. 
If the angular velocity is constant the magnitude of the tangential velocity will be constant 
but its direction will be constantly changing. 
 
Relationship between Tangential Velocity and Angular Velocity 
The ball shown in the diagram is rotating with angular velocity ω and 
tangential velocity v.  The time it takes for one revolution is the 
period, T.   
 
 
 
 
 

 
 
 
 
 
 
Example 
The diagram above shows a ball being spun of the end of a string of length 20cm.  The ball is 
rotating at 100rpm.  Find the ball’s tangential velocity.  
 
Solution 
𝑟 = 20cm = 0.2m 

𝜔 = 100 ×
2𝜋

60
× 0.2 = 2.09 rad s−1  

𝑣 = 𝜔𝑟 

𝑣 = 2.09 × 0.2 = 0.42ms−1 

 
  

Ball and string 

θ 
 

r 

ω  

v  

𝜔 =
𝐴𝑛𝑔𝑙𝑒 𝑖𝑛 𝑜𝑛𝑒 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=
2𝜋

𝑇
 

𝑣 =
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=
2𝜋𝑟

𝑇
=  

2𝜋

𝑇
 𝑟 = 𝜔𝑟 

So 𝑣 = 𝜔𝑟 
 

Converting rpm to radians per second 
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Example 
The wheels on a bicycle are 0.66m in diameter and are rotating once every 0.80s. 
Find. 
a. The angular velocity of the wheels. 
b. The velocity of the bicycle. 
 
Solution 

a.          𝜔 =
2𝜋

𝑇
 

              𝜔 =
2𝜋

0.80
 

 𝜔 = 7.9 rad s−1  (7.85 rad s−1) 

b. 𝑣 = 𝜔𝑟 

𝑣 = 7.85 ×
0.66

2
 

 𝑣 = 2.6ms−1  (2.59ms−1) 

 

RMA Question Book page 7 questions 4 and 5. 
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2.5 I understand the terms angular acceleration, tangential acceleration 
and radial (centripetal) acceleration and the relationship between 
them. 

 
Constant Period of Rotation 
Consider a ball being swung around by a string with a constant period of rotation T as 
shown in the diagram.  
 

 Angular acceleration 𝜶 is the acceleration in radians per 
second squared of the ball.  This is the rate of change of 
angular velocity. 
When 𝑇 = constant the magnitude of 𝛼 = 0 rad s−2. 

 

 Tangential acceleration 𝒂𝒕 is the acceleration in meters per 
second squared of the point on the rotating object being 
considered.  This is the magnitude of the rate of change of 
tangential velocity. 
When 𝑇 = constant the magnitude of 𝑎𝑡 = 0ms−2. 
 

 Radial acceleration (also known as centripetal acceleration) 𝒂𝒓 is the acceleration 
of the ball towards the centre of rotation.  This is measured in metres per second. 
This is the acceleration caused by the change in direction of the rotating object. 
When 𝑇 = constant the magnitude of 𝑎𝑟 = constant. 

 
Even when the rate of rotation is constant the radial acceleration is not zero as the direction 
of the ball’s velocity is changing. 
 
Changing Period of Rotation 
Consider a ball being swung around but with the period of rotation is decreasing at a 
constant rate i.e. the rotation rate is increasing.  In this case 
 Angular acceleration, 𝛼 = constant 

Tangential acceleration, 𝑎𝑡 = constant 
Radial acceleration, 𝑎𝑟 − increasing 

 
 

  

Ball and string 

𝛼 

𝑎𝑡  

𝑎𝑟  
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Relationship between 𝒂𝒕 and 𝜶 

From the relationship 𝑣 = 𝑢 + 𝑎𝑡𝑡  ⟹   𝑎𝑡 =
𝑣 − 𝑢

𝑡
 

 
As 𝑣 = 𝜔𝑟  𝑎𝑛𝑑 𝑢 = 𝜔0𝑟 then 
 

𝑎𝑡 =
𝑣 − 𝑢

𝑡
=
𝜔𝑟 − 𝜔0𝑟

𝑡
= (

𝜔 − 𝜔0

𝑡
) 𝑟 

 

As 𝛼 =
𝜔 −𝜔0

𝑡
 

 
Then 𝑎𝑡 = 𝛼𝑟 
 
Example 
A flywheel 1.0m in diameter is accelerated from 5.0 rad s−1 to 10 rad s−1 in 4.0s.   
a. Find the angular acceleration of the flywheel. 
b. Find the tangential acceleration of the outside edge of the flywheel. 
 
Solution 
a. 

𝜔0 = 5.0 rad s−1 

𝜔 = 10 rad s−1 

𝑡 = 4.0 s 

 
 
 
b. 𝑎𝑡 = 𝛼𝑟 

𝑎𝑡 = 1.2 ×
1.0

2
 

 𝑎𝑡 = 0.6ms−2 

 

 
  

α =
ω − ω0

t
 

α =
10 − 5.0

4.0
 

𝛼 = 1.2 rad s−1 
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𝟐. 𝟔     𝐈 𝐜𝐚𝐧 𝐝𝐞𝐫𝐢𝐯𝐞 𝐭𝐡𝐞 𝐫𝐞𝐥𝐚𝐭𝐚𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩𝐬 𝒂𝒓 =
𝒗𝟐

𝒓
 𝐚𝐧𝐝 𝒂𝒓 = 𝒓𝝎𝟐 𝐟𝐨𝐫 𝐭𝐡𝐞 

  radial acceleration of a rotating object. 
 
Consider an object rotating at a constant rate  
So 𝜔 = constant and 𝛼 = 0 rad s−2 
 
To find the radial acceleration at point Q first find an 
expression for the acceleration between points A and B.  
We then reduce the angle θ to zero to find the exact radial 
acceleration at Q. 
 
The radial acceleration is given by 
  

𝑎𝑟 =
𝑣 − 𝑢

𝑡
=
Δ𝑣

Δ𝑡
 

 
To calculate 𝑎𝑟 it is necessary to find Δ𝑣 and Δt. 
 
Finding 𝚫𝒗  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Δ𝑣 = 2𝑣 sin 𝜃  Equation 1 

 
  

 

A 

𝑄 

𝑣 

𝑢 

𝜃 

𝜃 

B 

Initial and final 
velocity vectors 

The vectors −𝑢 and 𝑣 can 
be combined to give the 
change in velocity, Δ𝑣. 

𝑣 𝑢 

𝑣 −𝑢 

Δ𝑣 = 𝑣 − 𝑢 

sin 𝜃 =
Δ𝑣

2𝑣
       𝑣 =  𝑢 =  𝑣  

𝑣 −𝑢 

Δ𝑣

2
 

 

Δ𝑣

2
 

 

𝜃 
 

𝜃 
 

From this 
triangle 
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Finding 𝚫𝒕 
 

Δ𝑡 =
distance

speed
=
arc length AB

v
 

As arc length AB = 2rθ 

Δ𝑡 =
2𝑟𝜃

𝑣
    Equation 2 

 
Finding 𝒂𝒓 
  

 Taking  𝑎𝑟 =
Δ𝑣

Δ𝑡
   and substituting in equations 1 and 2 gives 

𝑎𝑟 =
2𝑣sin𝜃

(
2𝑟𝜃
𝑣 )

=
𝑣2 sin 𝜃

𝑟𝜃
  

To find the centripetal acceleration we can reduce the angle 𝜃 and use the small angle 

approximation sin 𝜃 = 𝜃 

𝑎𝑟 =
𝑣2𝜃

𝑟𝜃
 

𝑎𝑟 =
𝑣2

𝑟
 

To find this relationship in terms of angular velocity substitute in 𝑣 = 𝜔𝑟 

𝑎𝑟 =
𝑣2

𝑟
=
𝜔2𝑟2

𝑟
 

𝑎𝑟 = 𝜔2𝑟 
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2.7 I can carry out calculations involving centripetal acceleration and 
centripetal force. 

 

The relationships 𝑎𝑟 =
𝑣2

𝑟
  𝑎𝑛𝑑 𝑎𝑟 = 𝜔2𝑟 can be used to find the centripetal force using  

Newton’s Second Law. 

𝐹 = 𝑚𝑎   ⟹    𝑎 =
𝐹

𝑚
 

This can be substituted into the relationships for centripetal acceleration 𝑎𝑟 giving 

𝐹

𝑚
=
𝑣2

𝑟
     and   

𝐹

𝑚
= 𝜔2𝑟 

These give 

𝐹 =
𝑚𝑣2

𝑟
= 𝑚𝜔2𝑟 

 
Example Horizontal Rotation 
A 100g ball on a string of length 90cm is rotated at 100 revolutions per 
minute in a horizontal circle.  
a. Calculate the tension in the string. 
b. Sketch the path of the ball if the string broke. 
 
Solution Horizontal Rotation 
a. 
𝑚 = 100g = 0.100kg 

𝑟 = 90cm = 0.90m 

 

 
 
 
 
 
b. 
 
 
 
 
 
  

𝜔 = 100rpm = 100 ×
2𝜋

60
= 10.47 rad s−1 

 

𝐹 = 𝑚𝜔2𝑟 

𝐹 = 0.100 × 10.472 ×0.90 

𝐹 = 9.9N 

 

Ball and string 

F 

Ball and string 

Path of the ball is a 
straight line. 
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Example Vertical Rotation 
A ball of mass 3.0kg is swining in a vertical circle on the end of a 50cm string.  Calcualte the 
minimum angular speed to keep the motion circular. 
 
Solution Vertical Rotation 
There are two forces acting on the ball; the tension, T,from 
the string and its weight, mg. 
 
𝑚 = 3.0kg        r = 50cm = 0.50m       
 
𝐹 = 𝑚𝜔2𝑟      and   W = mg 
 
At the top. 

𝐹 = 𝑚𝜔2𝑟 = 𝑇 +𝑚𝑔 

For minimum speed 𝑇 = 0N  

𝑚𝜔2𝑟 = 0 +𝑚𝑔 

𝜔 = √
𝑔

𝑟
 

 

𝜔 = √
9.8

0.50
= 4.4 rad s−1 

 
  

Ball and string 

T 

mg 

T 
mg 
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Example Conical Pendulum 
A conical pendulum of length 1.5m makes an angle to the vertical of 
25°.  Find 
a. The angular speed. 
b. The period of rotation. 
c. The tangential speed of the bob.  
 
 
Solution Conical Pendulum  
a. T is the tension in the string and F is the radial force. 

 Resolve the tension into horizontal and vertical components. 

Vertical components 

𝑇 cos 25° = 𝑚𝑔 

𝑇 =
𝑚𝑔

cos 25°
 

 

Horizontal components 

Centripetal Force, 𝐹 

𝐹 = 𝑚𝜔2𝑟 = 𝑇 sin 25° 

Substituting T from the vertical component in the horizontal 
component gives 

𝑚𝜔2𝑟 =
𝑚𝑔

cos 25°
× sin 25° 

Which simplifies to 

𝜔2𝑟 = 𝑔 tan 25° 

Solving for ω gives 

𝜔 = √
𝑔 tan25°

𝑟
 

Substituting in the values for g and r gives 

𝜔 = √
9.8 × tan 25°

1.5
 

𝜔 = 1.7 rad s−1  (1.75 rad s−1) 

 

b.           𝑇 =
2𝜋

𝜔
  where T is the period   

𝑇 =
2𝜋

1.75
= 2.6s 

c. 𝑣 = 𝜔𝑟 = 1.75 × 1.5 × sin 25° 

 𝑣 = 1.1ms−1 

  

r 

25°  

m 

T  

𝑇 sin 25°  

25°  

m 

T  
𝑇 cos 25°  

𝑚𝑔 

𝑟 = 1.5 sin 25°  

25°  
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Example Banked Track 
A car drives around a circular banked track at a radius of 50m at 10ms-1.  Find the angle at 
which the frictional force (side thrust) is zero. 
 
Solution Banked Track 
 

 

 
 
From the diagram using the components of the reaction force 

𝐹𝐶 = 𝑅 sin 𝜃  and  𝑅 cos 𝜃 = 𝑚𝑔    ⇒    𝑅 =
𝑚𝑔

cos 𝜃
 

Thees combine to give 

𝐹𝐶 =
𝑚𝑔 sin 𝜃

cos 𝜃
= 𝑚𝑔 tan 𝜃 

From the relationship sheet 

𝐹𝐶 =
𝑚𝑣2

𝑟
      

Equating these gives 

𝑚𝑣2

𝑟
= 𝑚𝑔 tan𝜃 

This simplifies to 

𝑣2

𝑟
= 𝑔 tan𝜃 

mg 

R  𝑅 cos 𝜃 = 𝑚𝑔 

 𝑅 sin 𝜃  

For there to be zero side force on the car when 
moving 𝐹𝑓 = 0N.  The only other horizontal 

component is the horizontal component of the 
reaction force.  This must provide the 
centripetal force 𝐹𝐶  required to maintain the 
circular motion. 

mg 

R 

𝜃  

When the car is stationary. The forces acting on the car 
are the weight (mg), the reaction force and the 
frictional force(Ff). 

𝐹𝑓 
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tan 𝜃 =
𝑣2

𝑔𝑟
 

𝜃 = tan−1 (
𝑣2

𝑔𝑟
) 

From the question 𝑣 = 10ms−1, 𝑟 = 50m and g = 9.8Nkg−1  

𝜃 = tan−1 (
102

9.8 × 50
) 

𝜃 = 12° 

 

RMA Question Book pages 9 and 10 questions 1 and 6.
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Key Area: Rotational Dynamics 
 
 
Success Criteria 
 

3.1 I understand what is mean by the term torque and can use the relationship 𝑇 = 𝐹𝑟 

to solve problems involving torque, perpendicular force and radius. 

3.2 I know that an unbalanced torque causes an angular acceleration. 

3.3 I can define moment of inertial of an object. 

3.4 I can select an appropriate relationship and calculate the moment of inertia of 

discrete masses, rods, discs, spheres and their combinations about a given axis. 

3.5 I can use the relationships 𝑇 = 𝐹𝑟 and 𝑇 = 𝐼𝛼 to solve problems involving torque, 

perpendicular force, distance from the axis, angular acceleration and moment of 

inertia. 

3.6 I can define the term angular momentum. 

3.7 I can state the principle of conservation of angular momentum. 

3.8 I can use the relationships 𝐿 = 𝑚𝑣𝑟 = 𝑚𝑟2𝜔 = 𝐼𝜔 and 

𝐿 = 𝐼𝜔 = constant (no external torque) to solve problems involving angular 

momentum, angular velocity, moment of inertia, tangential velocity, mass and its 

distance from the axis. 

3.9 I can define rotational kinetic energy as 𝐸 =
1

2
𝐼𝜔2 

3.10 I can solve problems involving potential energy, rotational kinetic energy, 

translational kinetic energy, angular velocity, linear velocity, moment of inertia and 

mass. 
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3.1 I understand what is mean by the term torque and can use the 
relationship 𝑻 = 𝑭𝒓 to solve problems involving torque, perpendicular 
force and radius. 

 
Torque is the turning effect produced by a force acting at a radius, r, from the centre of 
rotation. 
It is defined as 
 
 
 
 
 
 
 
 
 
 
RMA Question Book page 12 questions 3 to 5. 
 
 

3.2 I know that an unbalanced torque causes an angular acceleration. 
 

Force, mass and acceleration have equivalent quantities for rotational motion. 

 

Linear Motion Rotational Motion 

Acceleration, a Angular acceleration, α  

Mass, m Moment of inertia, I 

Force, F Torque, T 

 

 In linear motion an unbalanced force causes a linear acceleration. 

 In rotational motion an unbalanced torque causes an angular acceleration. 
 
The relationship between unbalanced torque, moment of inertia and angular acceleration is 
given by the relationship 
 
 
 
 
 
 
 
 
 

  

r 

F 

Torque 

𝑇 = 𝐹𝑟 

Torque (Nm) 

Force (N) 

Radius (m) 

𝑇 = 𝐼𝛼 

Torque (Nm) 

Moment of 
inertial (kgm2) 

Angular acceleration 
(radians s-2) 
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3.3 I can define moment of inertial of an object. 
 
The moment of inertia of an object is a measure of its resistance to angular acceleration 
about a given axis.   An object with a higher moment of inertial will resist angular 
acceleration more than an object with lower moment of inertia.   
The moment of inertia of an object depends on the mass of the object and the distribution 
of the mass. 
 
e.g.  A solid cylinder and a hollow cylinder have the same 
mass.   The moment of inertia of the hollow cylinder will be 
greater as most of the mass is at a greater radius.  How the 
mass is distributed affects the moment of inertial. 
 
 
 
 

3.4 I can select an appropriate relationship and calculate the moment of 
inertia of discrete masses, rods, discs, spheres and their combinations 
about a given axis. 

 
The moments of inertia of object can be calculated using calculus methods but it is more 
common to use given formulae for different shapes.   These formulae are given in the 
Additional Relationships Sheet you will receive when 
doing tests.  This sheet is also at the end of these notes. 
 
 
Frequently is not possible to find the exact moment of 
inertia using these formulae.  However, they can, with 
careful choice of formulae, give a good approximation.  
See the examples of the point mass and thin ring below. 
 
Moment of inertia symbol is 𝐼 with units of kgm2. 
 
 
 
 
 
 
 
 
  

m m 

Shape 
Moment of 

Inertia 

Point mass 𝐼 = 𝑚𝑟2 

Rod about 
centre 

𝐼 =
1

12
𝑚𝑙2 

rod about end 𝐼 =
1

3
𝑚𝑙2 

disc about 
centre 𝐼 =

1

2
𝑚𝑟2 

sphere about 
centre 

𝐼 =
2

5
𝑚𝑟2 
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Example – Point Mass 
In the Olympics, the throwing hammer consists of a 7.26kg 
mass on a thin wire 1.22m long.  Calculate the moment of 
inertia of the hammer when being spun around. 
 
 
Solution – Point Mass 
The system approximates a point mass.  

𝐼 = 𝑚𝑟2 

𝐼 = 7.26 × 1.222 

𝐼 = 10.8kgm2 

 
 
 
Example – Thin Ring 
Find the moment of inertia of a 1.0kg thin ring of radius 1.0m. 
 
Solution 
The ring can be approximated to many point masses at a radius of 
1.0m. 
 
𝐼 = 𝑚𝑟2 

𝐼 = 1.0 × 1.02 

𝐼 = 1.0kgm2 

Notice that this could also be used for a thin cylinder as the length of the ring does not 
appear in the formula. 
 
  

1.22m 

7.26kg 

1.0m 
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Example – Combining Moments of Inertia 
A flywheel is assembled from an axle of mass 5.5kg and 0.1m in 
diameter together with a flywheel of mass 100kg and 1.0m in 
diameter.  Find the moment of inertia of the assembled axle and 
flywheel. 
 
 
 
 
 
 
 
Solution – Combining Moments of Inertia 
Both the axle and the flywheel section are discs so their moments of inertia can be 
calculated separately then added. 
 
Axle 

𝑟 =
Diameter

2
=
0.1

2
= 0.05m 

𝑚 = 5.5kg 

𝐼 =
1

2
𝑚𝑟2 

𝐼 =
1

2
× 5.5 × 0.052 

𝐼 = 6.875 × 10−3kgm2 

Flywheel 

𝑟 =
Diameter

2
=
1.0

2
= 0.5m 

𝑚 = 100kg 

𝐼 =
1

2
𝑚𝑟2 

𝐼 =
1

2
× 100 × 0.52 

𝐼 = 12.5kgm2 

 
Total moment of Inertia 

𝐼𝑇 = 6.875 × 10−3 + 12.5 

𝐼𝑇 = 13kgm2 

 

Notice that due to the 𝑟2 term in the moment of inertia formula the smaller radius axle has 

almost no contribution to the overall moment of inertia. 

 
RMA Question Book pages 11 and 12 questions 1 and 2. 
 
 

 
  

1.0m 

0
.1

m
 

Assembled flywheel 
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3.5 I can use the relationships 𝑻 = 𝑭𝒓 and 𝑻 = 𝑰𝜶 to solve problems 
involving torque, perpendicular force, distance from the axis, angular 
acceleration and moment of inertia. 

 
Example 
A flywheel consisting of a disk of mass 2.5kg with radius 20cm and initial angular velocity of 
8.0 rad s−1 is braked by a force until stationary in 5.0 seconds. 
a. Calculate the moment of inertia of the disk 
b. Find the angular acceleration during braking. 
c. Find the magnitude of the braking force 
 
Solution 
a. 𝑚 = 2.5kg 

𝑟 = 20cm = 0.20m 

𝐼 =
1

2
𝑚𝑟2 =

1

2
× 2.5 × 0.202 = 0.05kgm2 

 
b. 𝜔0 = 8.0 rad s−1  
 𝜔 = 0 rad s−1 
 𝑡 = 5.0s  
 

𝜔 = ω0 + 𝛼𝑡   ⇒   𝛼 =
𝜔 − 𝜔0

𝑡
 

 

𝛼 =
0 − 8.0

5.0
= −1.6 rad s−2 

 
c. 𝑇 = 𝐼𝛼    and 𝑇 = 𝐹𝑟 

𝐼𝛼 = 𝐹𝑟 

𝐹 =
𝐼𝛼

𝑟
 

𝐹 =
0.05 × 1.6

0.20
= 0.40N 

   
 
RMA Question Book pages 13 and 15 questions 6 and 12. 
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3.6 I can define the term angular momentum 
 
Angular momentum, L, is the product of moment of inertia, I, and angular velocity, ω.  It is 
given by the relationship 
 
 
 
 
 
 
 
 
The above relationship applies to any rotating object.  When the object being considered is 
a point mass or thin ring the relationship 𝐼 = 𝑚𝑟2 and 𝑣 = 𝜔𝑟 can be substituted for I in the 
above relationship to give 
 

𝐿 = 𝑚𝑣𝑟 = 𝑚𝑟2𝜔 = 𝐼𝜔 
 

3.7 I can state the principle of conservation of angular momentum. 
 
Angular momentum is conserved when there are no external unbalanced torques. 
 

𝐿 = 𝐼𝜔 = constant    (for no external torques) 
 

  

𝐿 = 𝐼𝜔 

Angular momentum 
(kgm2s−1) 

Moment of 
inertial (kgm2) 

Angular velocity (rad s-1) 
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3.8 I can use the relationships 𝑳 = 𝒎𝒗𝒓 = 𝒎𝒓𝟐𝝎 = 𝑰𝝎 and 
𝑳 = 𝑰𝝎 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 (𝐧𝐨 𝐞𝐱𝐭𝐞𝐫𝐧𝐚𝐥 𝐭𝐨𝐫𝐪𝐮𝐞) to solve problems 
involving angular momentum, angular velocity, moment of inertia, 
tangential velocity, mass and its distance from the axis. 

 
Example 
A turntable is rotating freely at 80rpm about a vertical axis.  A small mass of 40g falls 
vertically onto the turntable and lands at a distance of 80mm from the central axis.  The 
rotation of the turntable is reduced to 20rpm. 
Find the moment of inertia of the turntable.  
 
 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
As angular momentum is conserved 

𝐿𝐵𝑒𝑓𝑜𝑟𝑒 = 𝐿𝑎𝑓𝑡𝑒𝑟 

8𝜋𝐼𝑡
3

= (𝐼𝑡 + 0.000256) ×
4𝜋

6
 

8𝜋𝐼𝑡
3

×
6

4𝜋
= 𝐼𝑡 + 0.000256 

4𝐼𝑡 = 𝐼𝑡 + 0.000256 

𝐼𝑡(4 − 1) = 0.000256 

𝐼𝑡 = 8.5 × 10−5kgm2 

 

RMA Question Book pages 15 and 16 questions 2, 3, 4, 5. 
  

Before the mass is dropped 

𝜔𝐵𝑒𝑓𝑜𝑟𝑒 = 80 ×
2𝜋

60
=
8𝜋

3
 rad s−1 

𝐼𝑡 = moment of inertia of the turntable 

𝐿𝐵𝑒𝑓𝑜𝑟𝑒 = 𝐼𝑡𝜔𝐵𝑒𝑓𝑜𝑟𝑒 = 𝐼𝑡 ×
8𝜋

3
 

𝐿𝐵𝑒𝑓𝑜𝑟𝑒 =
8𝜋𝐼𝑡
3

 

 

After the mass is dropped 

𝜔𝐴𝑓𝑡𝑒𝑟 = 20 ×
2𝜋

60
=
4𝜋

6
 rad s−1 

𝑚 = 40g = 0.040kg 

𝑟 = 80mm = 0.080m 

𝐿𝐴𝑓𝑡𝑒𝑟 = (𝐼𝑡 +𝑚𝑟2)𝜔𝑎𝑓𝑡𝑒𝑟 

𝐿𝐴𝑓𝑡𝑒𝑟 = (𝐼𝑡 + 0.040 × 0.0802) ×
4𝜋

6
 

𝐿𝐴𝑓𝑡𝑒𝑟 = (𝐼𝑡 + 0.000256) ×
4𝜋

6
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3.9 I can define rotational kinetic energy as 𝑬 =
𝟏

𝟐
𝑰𝝎𝟐 

 
 
 
 
 
 
 
 
 
 
 

3.10 I can solve problems involving potential energy, rotational kinetic 
energy, translational kinetic energy, angular velocity, linear velocity, 
moment of inertia and mass. 

 
Example 1 
A unicyclist pedals at 60rpm along a flat surface.  Use the information below to calculate the 
total kinetic energy of unicyclist and unicycle. 
 
Mass of unicycle = 10.0kg 
Mass of the unicyclist = 70kg 
Moment of inertia of the wheels and pedals = 0.63 kgm2 
Diameter of the unicyle wheel = 0.5m 
 
Solution 1 
 

Angular velocity, 𝜔 = 60 ×
2𝜋

60
= 6.28 rad s−1 

Linear velocity, 𝑣 = 𝜔𝑟 = 6.28 ×
0.5

2
= 1.57 ms−1 

 
 
 
 
 
 
 
 
 
Total kinetic energy = 98.60 + 12.42 = 110J  (to 2 significant figures)  

𝐸 =
1

2
𝐼𝜔2 

Rotational kinetic 
energy (𝐽) 

Moment of 
inertial (kgm2) 

Angular velocity (rad s-1) 

Linear kinetic energy 

𝐸 =
1

2
𝑚𝑣2 

𝐸 =
1

2
× (10.0 + 70) × 1.572 

𝐸 = 98.60J 

 

Rotational kinetic energy 

𝐸 =
1

2
𝐼𝜔2 

𝐸 =
1

2
× 0.63 × 6.282 

𝐸 = 12.42J 
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Example 2 
A solid 1.0kg ball of radius 0.10m starts from rest and rolls down a 1.5m high ramp, sloping 
at 30° to the horizontal.  The linear speed of the ball at the bottom of the slope 1.5ms-1.  
Find the moment of inertia of the ball. 
 
 
 
 
 
 
 
 
Solution 2 
At the top of the slope the gravitational potential energy of the ball is given by 
𝐸 = 𝑚𝑔ℎ 

𝐸 = 1.0 × 9.8 × 1.5 

𝐸 = 14.7J 

 
This gravitational potential energy will be converted to kinetic energy at the bottom of the 
slope.  The total kinetic energy will also be given by 

𝐸 =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 = 14.7J 

 

𝑣 = 𝜔𝑟   ⟹    𝜔 =
𝑣

𝑟
   which can be subsituted into the expression for kinetic energy 

 

𝐸 =
1

2
𝑚𝑣2 +

1

2

𝑣2𝐼

𝑟2
 

𝐸 =
1

2
𝑣2  𝑚 +

𝐼

𝑟2
  

This can be rearranged to give 

𝐼 = 𝑟2  
2𝐸

𝑣2
−𝑚  

Substituting in 𝐸 = 14.7J  and the other values for r, m and v gives 

𝐼 = 0.102  
2 × 14.7

1.52
− 1.0  

𝐼 = 0.12kgm2 

  

1.5m 

30°   
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Example 3  
An ice skater is spinning at an angular velocity of 
12 rad s−1 with her arms held out.  When her arms are 
brought to her side her angular velocity increases 
to 16.0 rad s−1. 
 
a. Explain why the skater’s angular velocity 

increases. 
 
 
b. State what happens to the skater’s kinetic energy as her angular velocity increases. 
 
 
 
Solution 3 
a. There are no external torques so angular momentum is conserved.  When the skater 

brings her hands to her side her moment of inertia decreases.  Her angular velocity 
increases as 𝐿 = 𝐼𝜔. 

 
b. Kinetic energy increases. 
 
 
 
 
RMA Question Book 
page15 question 1 
pages 17 and 18 questions 6 to 8. 
  

12 rad s−1 16.0 rad s−1 
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Key Area: Gravitation 
 

Success Criteria 
 

4.1 I can define gravitational field strength. 

4.2 I can sketch field lines and field line patterns around a planet and a planet–moon 

system. 

4.3       I can use the relationship 𝐹 =
𝐺𝑀𝑚

𝑟2
 to carry out calculations involving 

 gravitational force, masses and their separation. 

4.4 I can define gravitational field strength. 

4.5 I can derive gravitational field strength from Newton’s Law of Gravitation. 

4.6 I can carry out calculations involving the period of satellites in circular orbit, masses, 

orbit radius and satellite speed. 

4.7 I can define the terms “gravitational potential energy” and “gravitational potential”.  

4.8 I can use the relationships for gravitational potential energy and gravitational 

potential to solve problems. 

4.9 I can describe a gravitational potential well. 
 
4.10 I know that the energy required to move a mass between two points in a 

gravitational field is independent of the path taken. 

4.11 I can define escape velocity. 

4.12    I can derive the relationship v = √
2GM

r
 which gives escape velocity   

4.13 I can use the relationship for escape velocity to solve problems involving mass, 

distance and escape velocity. 

4.14 I understand the relevance of escape velocity to explain the low incidence of helium 

in the Earth’s atmosphere and why small astronomical bodies have no atmosphere. 
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4.1 I can define gravitational field strength. 
 
Gravitational field strength is defined as the gravitational force acting on a unit mass. 
The units of gravitational field strength are Newtons per kilogram (Nkg-1). 
 
 

4.2 I can sketch field lines and field line patterns around a planet and a 
planet–moon system. 

 
The gravitational field lines around a mass indicate the direction of the force on mass in the 
gravitational field.  Closer field lines indicate higher gravitational field strength.  
  

Planet Near the surface of a 
planet the gravitational 
field lines are almost 
parallel. 

Planet Moon 

The gravitational field lines around a 
planet and moon are distorted by the 
nearby mass. 
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𝟒. 𝟑     𝐈 𝐜𝐚𝐧 𝐮𝐬𝐞 𝐭𝐡𝐞 𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝑭 =
𝑮𝑴𝒎

𝒓𝟐
 𝐭𝐨 𝐜𝐚𝐫𝐫𝐲 𝐨𝐮𝐭 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧𝐬 

 involving gravitational force, masses and their separation. 
 
This relationship is the same as the one you were using during the higher course. 
This gives the gravitational force produced between two masses is called Newton’s Law of 
Gravitation 
 
 
 
 
 
Example 
Using the data given calculate the mean gravitational force between the Earth and the 
Moon. 
 
Data 
Mass of the Earth = 6.0 × 1024kg 
Mass of the Moon = 7.3 × 1022kg 
Mean Earth to Moon distance = 3.84 × 108m 
𝐺 = 6.67 × 10−11m3kg−1s−2 
 
Solution 
Substitute all the values into Newton’s Law of Universal Gravitation. 
 

𝐹 =
𝐺𝑚1𝑚2

𝑟2
=
6.67 × 10−11 × 6.0 × 1024 × 7.3 × 1022

( 3.84 × 108)2
= 2.0 × 1020N 

 
 
 
RMA Question Book page 19 questions 1 to 3 

  

F is the gravitational force between the two objects in Newtons 

𝑀 and 𝑚 are the masses of the objects in kilograms. 

𝑟 is the distance between the centre of mass of the objects in metres. 

𝐺 = 6.67 × 10−11m3kg−1s−2 Universal constant of gravitation. 

𝐹 =
𝐺𝑀𝑚

𝑟2
 Where  
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4.4 I can define gravitational field strength 
 
Gravitational field strength is defined as the gravitational force acting on a unit mass. 
 

4.5 I can derive gravitational field strength from Newton’s Law of 
Gravitation. 

 
At the surface of a planet the gravitational force on an object of mass, m, is given by 

𝐹 = 𝑤 = 𝑚𝑔 

where, g, is the gravitational field strength. 

 

Newton’s law of Gravitation gives the gravitational force as  

𝐹 =
𝐺𝑀𝑚

𝑟2
 

where, M, is the mass of the planet 

Equating both these relationships gives 

𝑚𝑔 =
𝐺𝑀𝑚

𝑟2
 

Which simplifies to give 

𝑔 =
𝐺𝑀

𝑟2
 

 

Example 

The relationships 𝐹 =
𝐺𝑀𝑚

𝑟2
 and w = 𝑚𝑔 both give the gravitational force on an object  

on the surface of the Earth.  Show that  𝑔 =
𝐺𝑀

𝑟2
= 9.8Nkg−1 

 
Solution  
Where  𝐺 is the Universal gravitation constant = 6.67 × 10−11m3kg−1s−2 

 M is the mass of the Earth = 6.0 × 1024m 

 𝑟 is the radius of the Earth = 6.4 × 106m 

Solution 

𝑔 =
𝐺𝑀

𝑟2
=
6.67 × 10−11 × 6.0 × 1024

(6.4 × 106)2
= 9.8Nkg−1 

 
RMA Question Book page 19 questions 4 to 6 
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4.6 I can carry out calculations involving the period of satellites in circular 
orbit, masses, orbit radius and satellite speed. 

 
When a satellite is moving in a circular orbit the 

relationships  

𝐹 = 𝑚𝑟𝜔2 and 𝐹 =
𝑚𝑣2

𝑟
 

give the centripetal force required to 

keep the satellite in orbit.   

 

This force is the gravitational force at 

the height of the satellite so this force 

is also given by  

𝐹 =
𝐺𝑀𝑚

𝑟2
 

Problems involving satellites can be solved by 

equating one of the centripetal force relationships to Newton’s Law of Gravitation. 

𝐹 = 𝑚𝑟𝜔2 =
𝑚𝑣2

𝑟
=
𝐺𝑀𝑚

𝑟2
 

 

Example 

Find  

a. the period of the international space station which orbits at an altitude of 400km. 

b. the tangential speed of the international space station. 

 

Solution 

a. 

Step 1 find ω  

𝐹 = 𝑚𝑟𝜔2  and 𝐹 =
𝐺𝑀𝑚

𝑟2
 

 

𝑚𝑟𝜔2 =
𝐺𝑀𝑚

𝑟2
 

This rearranges to 

𝜔2 =
𝐺𝑀𝑚

𝑚𝑟𝑟2
 

Which simplifies to 

𝜔 = √
𝐺𝑀

𝑟3
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Step 2 find the period 

Using the relationship 𝜔 =
2𝜋

𝑇
 (It′s not on the relationship sheet.  See section 2.4) and  

the above relationship for 𝜔 gives 

2𝜋

𝑇
= √

𝐺𝑀

𝑟3
 

This rearranges to give  

𝑇 = 2𝜋√
𝑟3

𝐺𝑀
 

 

Using the data sheet at the end of these notes 

𝐺 = 6.67 × 10−11m3kg−1s−2 

Mass of the Earth,𝑀 = 6.0 × 1024kg 

Altitude = 400km = 0.4 × 106m
Radius of the Earth = 6.4 × 106m

}    𝑟 = 6.4 × 106 + 0.4 × 106 = 6.8 × 106m 

 

𝑇 = 2𝜋√
(6.8 × 106)3

6.67 × 10−11 × 6.0 × 1024
 

 

𝑇 = 5600s  to 2 significant figures (5569s)    

 

b. 

𝑣 = 𝜔𝑟 and ω =
2π

T
 

𝑣 =
2𝜋𝑟

𝑇
 

𝑣 =
2𝜋 × 6.8 × 106

5569
 

 𝑣 = 7700ms−1  (7672ms−1) 

 

RMA Question Book pages 19 and 20 questions 7 to 13. 
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4.7 I can define the terms “gravitational potential energy” and 
“gravitational potential”.  

 
Gravitational Potential Energy Where g is Constant. 
 
Near the surface of the Earth 
(or other planets) the 
gravitational field strength, g, 
will not vary significantly over 
small changes in height, so can 
be taken as constant.  The 
relationship 𝐸 = 𝑚𝑔ℎ can be 
used to give the change in 
gravitational potential energy.  
Where h is the change in 
height. 
 
When the gravitational field strength cannot be regarded as constant, gravitational 
potential energy must take into account the variation of g with distance. 
 
Gravitational Potential Energy General Case 
Gravitational potential energy is taken as zero at infinity. 
 
 
 
 
 
 
 
 
 
When an object of mass 𝑚 is moved to a distance r from the centre of the mass of a 
planet/star etc. its gravitational potential energy is given by 
 
 
 
 
 
 
 
 
 
 
 
As the object is moved through a distance by the gravitational force, the gravitational 
potential energy is the work done by a moving mass going from infinity to the distance r.  As 

h 

𝐸𝑝 = −
𝐺𝑀𝑚

𝑟
 

Gravitational 
potential energy (J) 

Distance from the centre of 
planet/star etc. (m) 

Universal constant of 
gravitation (m3kg−1s−2)  

Mass of planet/star etc. (kg)  

Mass object (kg)  

𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞 = ∞ 

𝐸𝑝 = 0 J 

𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞 = 𝒓 

𝐸𝑝 = −
𝐺𝑀𝑚

𝑟2
 

 

r 

∞ 
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gravitational potential energy is lost as it moves from infinity to r the it will be less than 
zero.  i.e. gravitational potential energy is negative. 
 
Gravitational Potential 
Gravitational potential, V, of a point in space is defined as the work done in moving a unit 
mass from infinity to that point.  
 
 
 
 
 
 
 
 
 
 
 
 

4.8 I can use the relationships for gravitational potential energy and 
gravitational potential to solve problems. 

 
Example – Gravitational Potential Energy  

A 1000kg satellite is launched into low orbit at a height of 150km. 

Find 

a. its gravitational potential energy before launch. 

b. its gravitational potential energy while in orbit. 

c. the change in the satellite’s potential energy. 

 
Solution – Gravitational Potential Energy 
a. 

Mass of the Earth = 𝑀 = 6.0 × 1024kg 

Mass of the satellite = 𝑚 = 1000kg 

𝐺 = 6.67 × 10−11m3kg−1s−2 

𝑟 = 6.4 × 106m 

 

𝐸𝑝 = −
𝐺𝑀𝑚

𝑟
= −

6.67 × 10−11 × 6.0 × 1024 × 1000

6.4 × 106
 

𝐸𝑝 = −6.3 × 1010J    (−6.25 × 1010J) 

 
b. 𝑟 = 6.4 × 106 + 150 × 103 = 6.55 × 106 

𝐸𝑝 = −
6.67 × 10−11 × 6.0 × 1024 × 1000

6.55 × 106
 

𝑉𝑝 = −
𝐺𝑀

𝑟
 

Gravitational 
potential (Jkg-1) 

Distance from the centre of 
planet/star etc. (m) 

Universal constant of 
gravitation (m3kg−1s−2)  

Mass of planet/star etc. (kg)  
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𝐸𝑝 = −6.1 × 1010J    (−6.11 × 1010J) 

 

c. Δ𝐸𝑝 = −6.25 × 10−11 − (−6.11 × 1010) 

 Δ𝐸𝑝 = 1.4 × 109J   (1.43 × 109J)  

 
Example – Gravitational Potential 

Find the gravitational potential at the mean radius of the Moon orbit. 

 

Solution – Gravitational Potential 

From the data sheet 

𝑟 = 3.84 × 108m 

𝐺 = 6.67 × 10−11m3kg−1s−2 

𝑀 = mass of the Earth = 6.0 × 1024kg 

 

𝑉𝑝 = −
𝐺𝑀

𝑟
 

 

𝑉𝑝 = −
6.67 × 10−11 × 6.0 × 1024

3.84 × 108
 

 
𝑉𝑝 = 1.0 × 106Jkg−1 
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Example – Satellite Orbits 

A 1000kg satellite is orbiting at 200km above the Earth’s surface.  A rocket on the satellite 

fires and moves the rocket into and orbit at an altitude of 250km.  Find the energy required 

for this manoeuvre. 

 

Solution – Satellite Orbits 

 The total energy of the satellite = kinetic energy + gravitational potential energy. 

  
Finding the kinetic energy 

The requires all three relationships below 

 𝐹 =
𝑚𝑣2

𝑟
 ,   𝐹 =

𝐺𝑀𝑚

𝑟2
   and  𝐸𝑘 =

1

2
𝑚𝑣2 

Equating the relationships for force gives 

𝑚𝑣2

𝑟
=
𝐺𝑀𝑚

𝑟2
 

Which can be solved for  𝑣2 

𝑣2 =
𝐺𝑀

𝑟
 

This can then be used in the kinetic energy 

relationship 

𝐸𝑘 =
1

2
𝑚𝑣2 =

𝐺𝑀𝑚

2𝑟
 

 

Finding Potential Energy 
This is given by 

𝐸𝑝 = −
𝐺𝑀𝑚

𝑟
 

 

 
 
Total energy is given by  

𝐸𝑇 = 𝐸𝑘 + 𝐸𝑝 =
𝐺𝑀𝑚

2𝑟
−
𝐺𝑀𝑚

𝑟
 

Multiply the top and bottom of the 𝐸𝑝 term by 2 gives 

 

𝐸𝑇 =
𝐺𝑀𝑚

2𝑟
−
2𝐺𝑀𝑚

2𝑟
 

Which simplifies to 

𝐸𝑇 = −
𝐺𝑀𝑚

2𝑟
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From the data sheet 
𝑟200km = 6.4 × 106 + 2.00 × 105 = 6.6 × 106m 

𝑟250km = 6.4 × 106 × 2.50 × 105 = 6.65 × 106m 

𝐺 = 6.67 × 10−11m3kg−1s−2 

𝑀 = mass of the Earth = 6.0 × 1024kg 

𝑚 = 1000kg 

 At an altitude of 200km 

𝐸𝑇 = −
𝐺𝑀𝑚

2𝑟
=
6.67 × 10−11 × 6.0 × 1024 × 1000

2 × 6.6 × 106
= −3.032 × 1010J 

 
At an altitude of 250km 

𝐸𝑇 = −
𝐺𝑀𝑚

2𝑟
=
6.67 × 10−11 × 6.0 × 1024 × 1000

2 × 6.65 × 106
= −3.009 × 1010J 

  
 
Energy required = −3.009 × 1010 − (−3.032 × 1010) = 2.3 × 108J 
 
RMA Question Book pages 20 and 21 questions 14 to 19. 
 

4.9 I can describe a gravitational potential well 
 
A plot of gravitational potential 
against radius around a planet of 
radius, R is shown.   
An object moving towards the 
planet will “fall” down the well 
and be captured by the planet 
unless is has sufficient kinetic 
energy to escape. 
 
 
 
 
 
 
 
 
 

Increasing Radius Increasing Radius 

R R 

D
ec
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in
g 

P
o

te
n

ti
al
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4.10 I know that the energy required to move a mass between two points in 
a gravitational field is independent of the path taken 

 
 
The energy required to move a mass between 
two points in a gravitational field is given by the 
difference in gravitational potential energy 
between these points. 
If rocket is launched to a destination in a 
gravitational field both paths A and B would 
result in the same difference in potential 
energy.  The energy required by the rocket is 
independent of the path taken. 

 
 
 
4.11 I can define escape velocity 
 
There are two equivalent ways to define escape velocity. 
 

 Escape velocity is the minimum velocity required to allow a mass to escape a 
gravitational field. 

 Escape velocity is the minimum velocity required to achieve zero kinetic energy and 
maximum (zero) potential energy at an infinite distance. 

 
This means that an unpowered object launched at escape velocity or above from a surface 
of a planet will not fall back down to the surface.  It will continue on indefinitely.  
Although escape velocity is the usual term it is actually a speed not a velocity.   
 

  

Rocket  

Destination 

Planet 
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4.12    I can derive the relationship 𝐯 = √
𝟐𝐆𝐌

𝐫
 𝐰𝐡𝐢𝐜𝐡 𝐠𝐢𝐯𝐞𝐬 𝐞𝐬𝐜𝐚𝐩𝐞   

 velocity 
 
This derivation requires the relationship for gravitational potential energy 
and kinetic energy. 

𝐸𝑝 = −
𝐺𝑀𝑚

𝑟
   and   𝐸𝑘 =

1

2
𝑚𝑣2 

 
An object launched at the escape velocity it will reduce in velocity as it 
moves out through the gravitational field.  Kinetic energy is transformed 
into gravitational potential energy, reaching zero velocity and zero potential 
energy at an infinite distance.  The total energy of the object at all times will 
be zero. 

So total energy =
1

2
𝑚𝑣2 −

𝐺𝑀𝑚

𝑟
= 0J 

This rearranges to 
1

2
𝑚𝑣2 =

𝐺𝑀𝑚

𝑟
 

The m term cancels and the 2 can be moved to the right-hand side giving 

𝑣2 =
2𝐺𝑀

𝑟
 

Taking the square root leaves 

𝑣 = √
2𝐺𝑀

𝑟
 

Where r is the distance from the centre of the planet from which the object 
is launched.  This can be the surface or from orbit. 
  

∞ 

r 
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4.13 I can use the relationship for escape velocity to solve problems 
involving mass, distance and escape velocity. 

 
Example 
Find the escape velocity of the Earth. 
 
Solution 

From the data sheet 

𝑟 = 6.4 × 106m 

𝐺 = 6.67 × 10−11m3kg−1s−2 

𝑀 = 6.0 × 1024kg 

 

𝑣 = √
2𝐺𝑀

𝑟
 

𝑣 = √
2 × 6.67 × 10−11 × 6.0 × 1024

6.4 × 106
 

 𝑣 = 11000ms−1 

 
RMA Question Book pages 21 and 22 questions 20 to 23. 
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4.14 I understand the relevance of escape velocity to explain; the low 
incidence of helium in the Earth’s atmosphere; why small astronomical 
bodies have no atmosphere. 

 
The temperature of a gas is a measure of the average kinetic energy of its molecules.  
However, the speeds of the molecules are distributed over a range determined by the 
molecular mass and the temperature.  The distribution of molecular speeds for oxygen, 
nitrogen and helium at the same temperature is shown below.   Due to its lower molecular 
mass helium has more molecules at higher speeds than nitrogen or oxygen.   

 
The Low Incidence of Helium in the Earth’s Atmosphere 
High in the Earth’s atmosphere it is more likely that some helium will reach escape velocity 
and be lost from the atmosphere.  Over time almost all the helium will be lost.  The 
distribution of speeds for oxygen and nitrogen ensure that almost no molecules reach 
escape velocity.  This means Earth has an abundance of nitrogen, oxygen, argon, carbon 
dioxide and water vapour which have a relatively high molecular mass.  There are almost no 
low molecular mass molecules such as hydrogen and helium. 
 
Small Astronomical Bodies 
Small astronomical bodies e.g. The Earth’s Moon have a low escape velocity.  This means 
that all gases will have molecules with sufficient speed to escape into space.  This means 
that small planets, moons, asteroids etc. will not have an atmosphere.  
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Key Area: General Relativity 
 

Previous Knowledge 
Frames of reference. 
Light travels at a constant speed in a vacuum. 
Time dilation. 
Length contraction. 

 

Success Criteria 
 
5.1 I can describe what is meant by an inertial frame of reference and a non-inertial 

frame of reference. 
 
5.2 I can state the “equivalence principle” of General Relativity  
 
5.3 I know that acceleration and gravitational fields causes time to slow down. 
 
5.4 I can draw and interpret spacetime diagrams. 
 
5.5 I know that general relativity leads to the interpretation that mass curves spacetime, 

and that gravity arises from the curvature of spacetime. 
 
5.6  I understand what is meant by “a black hole” 
 
5.7 I understand what is meant by the terms “event horizon” and “Schwarzschild 

radius”. 
 
5.8 I know that time appears to be “frozen” at the event horizon of a black hole. 
 

5.9       I can use the relationship 𝑟 =
2𝐺𝑀

𝑐2
to solve problems relating to the 

            Schwarzschild radius of a black hole. 
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5.1 I can describe what is meant by an inertial frame of reference and a 
non-inertial frame of reference. 

  
In the Special Relativity section in the Higher Physics course you learned about frames of 
reference.  You would only have considered frames of reference which were moving at a 
constant relative velocity. 
Now you have to consider relativity in the context of accelerating frames of reference. 
 
 
 
 
Inertial frames of reference are frames of 
reference where the frames have a constant 
relative velocity.  Special relativity only applies 
to inertial frames of reference. 
 
 
 
 
 
 
 
 
 
 
Non-inertial frames of reference are 
frames of reference where they are 
accelerating or in a gravitational field.  
General relativity is required to describe 
non-inertial frames of reference. 
 
 
 
 
 
RMA Question Book page 23 questions 1 to 4 
 
 

  

Frame of reference A 

Frame of reference B 
 

Constant Velocity 

Constant Velocity 

Frame of reference A 

Frame of reference B 

Accelerating 

Accelerating 
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5.2 I can state the “equivalence principle” of general relativity  
 
The equivalence principle states that the effects of gravity are exactly equivalent to the 
effects of acceleration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider two rockets with no windows so the occupant cannot see outside.  In each rocket 
the occupant will feel a force pressing their feet on the floor but they will not be able to tell 
which capsule they are in.  
 
The equivalence principle means that any experiment in these rockets gives the same result. 
For example, when either person drops a ball it will fall to the floor of their rocket in the 
same way. 
 
Both rockets have the same large magnitude of force acting on them.  Rocket A has a 
gravitational force, Rocket B an accelerating force. 
 
 If a beam of light is shone horizontally from one side of the rocket will strike the other wall 
of the rocket slightly lower due to 

 the gravitational force (A) causing a downward curvature.  

 the upward acceleration of the rocket (B) during the travel time of the light ray. 
 
An astronaut in deep space, far from any other gravitating matter, will feel weightless but so 
too would a person (who might also be an astronaut) in orbit around the Earth freely falling 
in a uniform gravitational field. In both these cases if an object (e.g. the astronaut’s spanner) 
were released from rest it would remain near to the person’s hands, in accordance with 
Newton’s first law. The effects are the same in both cases since both situations are (locally) 
inertial frames. 
 
 
  

Planet 

Accelerating Rocket  
No gravity 

Stationary rocket  
in a gravitational 
field. 

A B 
Lamp with a 
parabolic path of a 
light ray 

Not to scale 
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5.3 I know that acceleration and gravitational fields causes time to slow 
down. 

 
  
In the Higher Physics course you learned about time 
dilation.  When moving at a constant relative 
velocity an observer in rocket A would observe time 
slowed down in rocket B.  Symmetrically an observer 
in rocket B would observe time slowed down in 
rocket A. 
This occurs when both frames are inertial. 
 
 
 
 
 
 
 
When dealing with non-inertial frames the situation 
is no longer symmetrical.  The observer in rocket A 
sees time slowed in rocket B.  However, the 
observer in rocket B sees time sped up in rocket A. 
 
 
Acceleration causes time to slow down.  As the 
equivalence principle shows that the effects of 
acceleration and gravity are the same then gravity 
also causes time to slow down. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RMA Question Book page 23 questions 5 and 7 
 
 

Both constant 
velocity 

No gravity 

B 

A 

Light Clock 

Constant velocity 
No gravity 

B 

A 

Accelerating 
No gravity 

Observer in Earth’s gravitational 
field sees the distant observer’s 
clock run fast. 

A distant observer sees the 
clock on Earth run slow. 
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5.4 I can draw and interpret spacetime diagrams. 
 
When representing space, we frequently use three axes x, y and z.  
These axes are perpendicular to each other. Time is then treated 
separately from space. 
 
 
 
 
 
 
With special and general relativity time and space are represented 
together as a four dimensional spacetime.  This representation 
consists of three space axes (x, y and z) and one axis of time (t).   
It is not possible to draw all these axes on paper so we simplify by just 
drawing the x-axis and the time axis. 
 
 
 
 
 
 
A second space axis can also be drawn if necessary but not all four 
axes. 
 
 
 
 
 
The origin on the t-axis represents the present time i.e. now.  Positive values of time are in 
the future and negative values of time are in the past. 
Positive and negative values along the x-axis represent the object or event’s position in 
space. 
  

z 

x 

y 

t 

x 

t 

x 

y 
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Representing objects and Events on a spacetime diagram 
Lines on spacetime diagram are called world lines. 
If the object drawn on the spacetime diagram is moving freely then the line is referred to as 
a geodesic.  These lines represent the shortest distance between two points is spacetime. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Stationary Object 
When an object is stationary in space it is still 
moving forward in time.  This is represented 
on a spacetime diagram as a vertical line. 

t 

x 

t 

x 

Light Rays 
The scales on spacetime diagrams are scaled so 
that the world line of a light ray appears as a 
line a 45° or -45°  

An Event 
This is represented as a point on the space time 
diagram. 

 Event A occurs at a different time and at a 
different place to Event B. 

 Event C occurs at the same place as Event A but 
at a different time. 

 Event C occurs at the same time as Event B but 
at a different place. 

 

t 

x 
B 

A 

C 

Objects moving at a constant velocity 
These are shown as straight world lines.  All objects will 
have speed between zero (a vertical line) and the speed 
of light (a line at 45°). 
Line B has a higher velocity than line A. 
 

t 

x 

A 
 

B 
 

Accelerating objects 
These are shown as curved world lines. 

t 

x 
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When extended to three dimensions (two of space and one 
of time) the spacetime diagram representing light rays 
becomes a light cone.  
 
 
 
 
 
 
 
 

5.5 I know that general relativity leads to the interpretation that mass 
curves spacetime, and that gravity arises from the curvature of 
spacetime. 

 
In general relativity, the concept of a gravitational force does 
not occur.   Gravity is interpreted as a mass altering the shape of 
spacetime.  Objects in within the gravitational field are 
influenced by the shape of the spacetime.  The diagram shows a 
star curving the spacetime around it.  The planet in orbit is 
following a geodesic path as it follows the curved spacetime 
around the star. 
 
RMA Question Book pages 23 and 24 questions 8 to 17 
 
 
 

5.6  I understand what is meant by “a black hole” 
 
A black hole is a region of space where the gravitational field is so high that radiation and 
matter cannot escape.  They are areas of space where the density of matter is extremely 
high.   Black holes are formed by the collapse of massive stars, where the inward spacetime 
curvature produced by gravity overcomes the outward pressure of nuclear processes within 
the star.  As the star collapses its diameter decreases which produces a higher gravitational 
field which again caused the star to reduce in diameter.  This continues until all the matter 
of the star is compressed to a single point called a singularity. 
 

5.7 I understand what is meant by the terms “event horizon” and 
“Schwarzschild radius”. 

 
Near a black hole spacetime is curved to such an extent that light cannot escape.  Moving 
away from the black hole the curvature of spacetime will decrease to a point where light 
can escape.  This radius is call the event horizon or the Schwarzschild radius.   This radius is 
the boundary between areas of space where radiation and matter can escape from a black 
hole and where they cannot. 

Star 

Planet 

z 

x 

y 

The past 

The future 

The present 
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5.8 I know that time appears to be “frozen” at the event horizon of a black 
hole. 

 
Observer 1 moving towards the event horizon of a black hole will experience an increasing 
gravitational field strength.  Observer 2 outside the event horizon will see the clock of 
observer 1 run increasingly slow.  At the event horizon, it will appear that the clock of 
observer 1 will have stopped i.e. frozen. 
According to Observer 1 they will pass through the event horizon without any noticeable 
change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟓. 𝟗     𝐈 𝐜𝐚𝐧 𝐮𝐬𝐞 𝐭𝐡𝐞 𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝒓 =
𝟐𝑮𝑴

𝒄𝟐
𝐭𝐨 𝐬𝐨𝐥𝐯𝐞 𝐩𝐫𝐨𝐛𝐥𝐞𝐦𝐬 𝐫𝐞𝐥𝐚𝐭𝐢𝐧𝐠 𝐭𝐨 𝐭𝐡𝐞 

            Schwarzschild radius of a black hole. 
 
The Schwarzschild radius can be calculated using the relationship 
 
 
 
 
 
 
 
 
 
 
 
 
  

𝑟 =
2𝐺𝑀

𝑐2
 

Schwarzschild Radius (m) 
Speed of light (ms-1) 

Universal constant of 
gravitation (m3kg−1s−2)  

Mass of the black hole (kg)  

Black hole event 
horizon 

Observer 1 with a light clock 
moving towards the event 
horizon. 

An observer 2 outside the event 
horizon sees the clock of the 
observer approaching the event 
horizon go increasingly slow then 
stop when it reaches the event 
horizon. 
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Example 
A star of mass ten times that of the Sun collapses to form a black hole.  Calculate the 
Schwarzschild radius of the black hole. 
 
Solution 
𝐺 = 6.67 × 10−11m3kg−1s−2 

𝑀 = 10 × 2.0 × 1030kg = 2.0 × 1031kg 

𝑐 = 3.0 × 108ms−1 

 

𝑟 =
2𝐺𝑀

𝑐2
 

𝑟 =
2 × 6.67 × 10−11 × 2.0 × 1031

3.0 × 108
2  

𝑟 = 3.0 × 104m = 30km 

 

RMA Question Book pages 24 and 25 questions 18 to 22 
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Key Area: Stellar Physics 
 

Previous Knowledge 
 
Inverse square law. 

Peak wavelength and temperature. 

Convert between light years and metres. 

 

Success Criteria 
 
6.1 I can describe the properties of stars in terms of their radius, surface temperature, 

luminosity and apparent brightness. 
 
6.2 I can solve problems involving surface temperature, power per unit area, luminosity, 

apparent brightness and stellar radius.  
 
6.3 I know the stages of the proton-proton chain in stellar fusion reactions which 

convert hydrogen to helium. 
 
6.4 I know how stars are formed from interstellar dust 
 
6.5 I know and understand the stages in stellar evolution. 
 
6.6 I understand the Hertzsprung-Russell (H-R) diagram and where main sequence stars, 

giant stars, super giant stars and white dwarves occur on the diagram.  
 
6.7 I can predict the colour of a star from its position on the Hertzsprung-Russell 

diagram. 
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6.1 I can describe the properties of stars in terms of their radius, surface 
temperature, luminosity and apparent brightness 

 
Radius 
The Sun, the star in our solar system, has a radius of approximately 695,500km.  This is 
about 109 times the size of the Earth. 
When examining the size of stars, their radius is usually expressed as a multiple or a fraction 
of the size of the Sun, 𝑅⨀ .   
There are a large range of sizes of star a few examples are given in the table 1.  
 
Table 1 

Star Type Radius(𝑹⨀) Surface 
Temperature 

(K) 

Luminosity 
(𝑳⨀) 

Sirius B White Dwarf 0.0084 25200 25.4 

Procyon B White Dwarf 0.01234 7740 0.00049 

Sun Main 
Sequence 

1 5778 1 

Beta 
Cassiopeiae 

Main 
Sequence 

3.5 7079 27.3 

Arcturus Giant 25.4 4286 170 

Hamal Giant 14.9 4480 91 

Alpha Persei Supergiant 68 6350 5400 

Betelgeuse Supergiant 887 3590 140,000 

 
 
Surface Temperature 
The surface temperature of a stars varies with their radius and the energy produced by 
nuclear fusion within the stars.  Examples of some surface temperatures are given in table 1. 
The surface temperature the star determines the power radiated.  This is given by the 
Stefan-Boltzmann relationship.  
 
 
  
 
 
 
 
 
 
  

Power per unit area = 𝜎𝑇4 

Power per unit area (Wm-2) Stefan-Boltzmann constant (Wm-2K-4) 
See the data sheet 

 Surface Temperature (K) 
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Luminosity 
When the Stefan-Boltzmann relationship is multiplied by the surface area of a star it gives 
the total power emitted which is called the star’s luminosity, L.   
The luminosity depends on the surface area of the star as well as its surface temperature.  
Large stars with a low temperature can be equally as luminous as small star with a high 
surface temperature.  Table 1 gives some typical values of luminosity. 
 
The area of a sphere is given by 𝐴 = 4𝜋𝑟2.  When multiplied by the Stefan-Boltzmann 
relationship gives the relationship for luminosity. 
 
 
 
 
 
 
 
 
 
Apparent Brightness 
As light radiates away from a 
star it is spread out over a 
larger area.  Area A in the 
diagram is bigger than area B.  
The power per unit area on 
area A is less than that on area 
B.  So, at the distance of area A 
the star will appear dimmer 
than at the distance of area B. 
The apparent brightness of a star can be calculated from 
 
 
 
 
 
 
 
 
 
 
 
 

 
When the distance to a star is known, the apparent brightness allows the luminosity of a 
star to be calculated. 
  

𝐿 = 4πr2𝜎𝑇4 

Luminosity (W) Stefan-Boltzmann constant (Wm-2K-4) 

Surface Temperature (K) Radius of the star (m) 

B 

A 

𝑏 =
𝐿

4πr2
 

Apparent brightness (Wm-2) 
Distance from the star (m) 

Luminosity (W) 

Note 
The r term in the apparent brightness relationship is a different quantity from the r 
term in the luminosity relationship.  These r terms cannot be cancelled. 
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6.2 I can solve problems involving surface temperature, power per unit 
area, luminosity, apparent brightness and stellar radius.  

 
 

 
 
 
 
 
 
 
 
 
 
Example 1 
The surface temperature of the star Hamal is 4480K, see Table 1 in section 6.1.  Find 
a. The power emitted by each square metre of the Hamal. 
b. The luminosity of the Hamal. 
c. The apparent brightness of Hamal (Earth Hamal distance is 65.8 light years) 
 
Solution 1 
a. Power per unit area = 𝜎𝑇4 
 Power per unit area = 5.67 × 10−8 × 44804 
 Power per unit area = 2.3 × 107W    (2.28 × 107W)   
 
b. To find the luminosity first calculate the radius of Hamal.   

From table 1, 𝑟 = 14.9𝑅⨀ for the star Hamal. 
From the Data Sheet 𝑅⨀ = 6.9550 × 108m  
 
𝑟 = 14.9 × 6.9550 × 108 = 1.04 × 1010m 

 
𝐿 = 4πr2𝜎𝑇4 

 𝐿 = 4𝜋 × (1.04 × 1010)2 × 2.28 × 107 

 𝐿 = 3.1 × 1028W   (3.08 × 1028W)  

 
  

from the data sheet 
𝜎 = 5.67 × 10−8Wm−2K−4  
 

Note Wien’s Displacement Law may be required to solve some of the problems in the 
problem book.  This is a relationship between the surface temperature of a star and 
the peak wavelength of the radiation emitted.  Knowledge of Wien’s Displacement 
Law is not part of the Advanced Higher Physics course.  
 

𝜆𝑝𝑒𝑎𝑘 =
2.9 × 10−3

𝑇
 

 

where  
 𝜆𝑝𝑒𝑎𝑘 = Peak wavelength of the radiation.      

𝑇 = Surface temperature of the star.
 

 

0 λ/μm 

Peak Wavelength 
Power per 
 unit area/Wm-2 

Emitted 
Radiation 

From part a. 
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c. Convert 65.8 light years to metres 

1 light year = 60 × 60 × 24 × 365 × 3.0 × 108 = 9.46 × 1015m 

𝑟 = 65.8 light years = 65.8 × 9.46 × 1015 = 6.23 × 1017m 

𝑏 =
𝐿

4πr2
 

𝑏 =
3.08 × 1028

4π(6.23 × 1017)2
 

𝑏 = 6.3 × 10−9Wm−2 

 
Example 2 
The star Arcturus has a luminosity of 6.54 × 1028W and an apparent brightness of         
4.3 × 10−8Wm−2.  Calculate its distance from the Earth in light years. 
 
Solution 2 
The relationship for apparent brightness 

𝑏 =
𝐿

4πr2
 

rearranges to 
 

𝑟 = √
𝐿

4𝜋𝑏
 

  

𝑟 = √
6.54 × 1028

4𝜋 × 4.3 × 10−8
 

 
𝑟 = 3.49 × 1017m 
 

1 light year = 60 × 60 × 24 × 365 × 3.0 × 108 = 9.46 × 1015m 

 

𝑟 =
3.49 × 1017

 9.46 × 1015
= 36.8 light years 

  
RMA Question Book pages 26 and 27 questions 1 to 13 
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6.3 I know the stages of the proton-proton chain in stellar fusion reactions 
which convert hydrogen to helium. 

 
In main sequence stars (see section 6.4) hydrogen nuclei are fused to form helium nuclei 
releasing energy which powers the star.  High temperatures and pressures are required to 
give the positive nuclei sufficient energy to overcome the electrostatic repulsion between 
them. This means that fusion reactions only occur in the core of a star. The main fusion 
reaction pathway is called the proton-proton chain. 
Overall the fusion reaction converts six hydrogen nuclei to one helium nucleus, two 
hydrogen nuclei, two positrons, two neutrinos and energy.  The energy of the reaction is 
released as two gamma rays and as the kinetic energy of the particles.  The proton-proton 
chain occurs in three stages.    

Proton Neutron Positron 

𝜈 

Neutrino Gamma Ray 

𝛾 

𝜈 

𝛾 

H1
1  

H1
1  

H1
1  

H1
2  

He2
3  

𝜈 

𝛾 

H1
1  

H1
1  

H1
1  

H1
2  

He2
3  

He2
4  

H1
1  

H1
1  

Stage 1 
Two hydrogen nuclei fuse to form 
a deuterium nucleus.  This also 
releases a neutrino and a positron. 

Stage 2 
The deuterium nucleus fuses with a 
hydrogen nucleus to form a helium 3 
nucleus.  This also releases a gamma 
ray. 

Stage 3 
Two helium 3 nuclei fuse to form a 
helium 4 nucleus.  This also releases 
two hydrogen nuclei. 
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6.4 I know how stars are formed from interstellar dust 
 
Formation of Stars 
Stars are formed from cold relatively dense interstellar dust 
clouds.  These clouds can be stable with the motion of the 
particles in the clouds producing an outward pressure which 
balances the inward gravitational force. 
 
A trigger (e.g. a nearby supernova explosion) which causes and 
increase in density in some parts of the clouds without an 
increase in temperature can cause gravitational attraction to 
overcome the outward pressure.  This leads to the inward 
collapse of the cloud. 
 
As the cloud contracts the gravitational potential energy of the 
particles in the cloud are converted kinetic energy.  This causes 
and increase in temperature. 
 
When the temperature and pressure are sufficiently high, 
fusion reactions start within the core.  This produces energy 
which further heats the star.  When the outward thermal  and 
radiation pressure produced by the hot gas balances the inward 
force of gravity the star reaches equilibrium.   
The star at this stage will be a main sequence star which is 
converting hydrogen to helium.  This can continue for millions 
to billions of years.  How long the star remains as a main 
sequence star and its future evolution is determined by its initial mass. 
High mass stars have lifetimes as short as a few tens of millions of years.  Low mass stars can 
have life time of thousands of billions of years.    
 
 
  

Cold Interstellar 
Dust Cloud 

Star 

Collapsing cloud 
(proto-star) 



70 | P a g e  
Version 1.0 

6.5 I know and understand the stages in stellar evolution. 
 
The diagram below show the evolution of main sequence stars.  The follow one of two paths 
which depends on their mass. 

 
Main Sequence – Most stars are in this group as most of the lifetime of a star is spent as a 
main sequence star converting hydrogen to helium. 
 
Giants and Super Giants – After the hydrogen is converted to helium in a main sequence 
star the outward thermal pressure decreases.  This allows gravity to compress the core 
increasing its temperature.  A new equilibrium is reached when this increased temperature 
allows the further fusion reactions converting helium to carbon. As helium to carbon fusion 
occurs at a higher temperature this increases the thermal pressure making the star expand.  
Low mass stars expand to form giant. High mass stars go through further stages of fusion at 
higher temperatures and expand to form super giants. 
 
White Dwarves – These occur at the end of the life of low mass stars after they have run out 
of helium to convert to carbon.    The expanded outer layers of a giant star is dispersed into 

Main Sequence Star 

Supernova 

Red Giant 
Red Super Giant 

White Dwarf 

Neutron Star Black Hole 
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the space surrounding the star.  This leaves the hot core of the star where no further 
nuclear fusion occurs.  This is a white dwarf which continues to cool.   
 
Neutron Stars and Black Holes 
These are formed from super giant stars.  These stars continue to fuse helium to carbon 
then go through a series of fusion processes until iron is reached.   After iron, fusion does 
not produce any energy.  Once fusion in the star stops its core will suddenly collapse 
releasing large amounts of energy blowing away the outer layers of the star.  This is called a 
supernova and can for a short period make the star brighter than the whole galaxy. 
What remains after a supernova depends of the mass of the star.  It can leave a highly 
compressed core consisting of neutrons, a neutron star.   If the mass of the star is large 
enough the gravitational contraction of the core can continue until a single point in space 
called a singularity is reached.  The resulting object is a black hole. 
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6.6 I understand the Hertzsprung-Russell (H-R) diagram and where main 
sequence stars, giant stars, super giant stars and white dwarves occur 
on the diagram.  

 
When the luminosity of stars are plotted against their temperature a Hertzsprung-Russell    
(H-R) is obtained.    
 
Main sequence stars occur in a broad diagonal band.  High mass stars occur in the top left 
of the diagram and low mass stars towards the bottom right. 
 
Giants and super giants occur in the top right of the diagram as they are high luminosity, 
low temperature stars.  Main sequence stars will change their temperature an luminosity as 
they run out of hydrogen and move across the diagram into the giant or super giant region 
depending on their mass. 
 
White dwarves occur in the bottom left of the diagram as they are low luminosity stars.  
They are formed from giant stars which have lost their outer layers when fusion reactions 
end in their cores. 
 
Neutron stars and black holes cannot be plotted on the H-R diagram as their temperatures 
are beyond the scale of the diagram and their luminosity is very low or zero. 
 
Throughout their lives stars will move across the H-R diagram from the main sequence to 
giant or supergiant then to white dwarves.   
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6.7 I can predict the colour of a star from its position on the Hertzsprung-
Russell diagram. 

 
The position of a star on the H-R diagram is determined by its temperature and luminosity.  
As the temperature increases from right to left the colour changes from red to blue.  By 
examining the position of a star on the diagram its colour can be found by reading the 
colour scale at the bottom of the diagram. 
 

RMA Question Book pages 28 and 29 question 14 

  



74 | P a g e  
Version 1.0 

Quantities, Units and Multiplication Factors 
 

  
 

 

Quantity 
Quantity 
Symbol 

Unit 
Unit 

Abbreviation 

acceleration a Metre per second squared ms-2 

Angle 𝜃  Degree/Radians ° /Rad 

Angular acceleration α  Radians per second squared rad s-2 

angular displacement 𝜃   Radians rad 

Angular momentum L 
Kilogram metres squared 

per second 
kgm2 s−1 

angular velocity 𝜔,𝜔0 Radians per second rad s-1 

Apparent Brightness b Watt per metre squared Wm−2 

Displacement s Metre m 

Force F Newton N 

Gravitational Field 
Strength 

g Newtons per kilogram Nkg−1 

Gravitational Potential 𝑉𝑝 Joules per kilogram Jkg−1 

Gravitational Potential 
Energy 

𝐸𝑝 Joules J 

Height h Metre m 

Kinetic Energy 𝐸𝑘  Joules J 

Luminosity L Watt W 

Luminosity L Watt W 

Mass m Kilogram Kg 

Moment of Inertia I Kilogram metre squared kgm2 

Period T Second s 

Power per unit Area I Watt per metre squared Wm-2 

Power per unit area I Watt per metre squared Wm−2 

Radial acceleration 𝑎𝑟 Metre per second squared ms-2 

Radius r Metre m 

 Schwarzschild radius r Metre m 

Tangential acceleration 𝑎_𝑡 Radians per second squared rad s-2 

Temperature T Kelvin K 

Time t Second s 

Torque T Newton metre Nm 

velocity v Metre per second ms-1 
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Prefix 
Name 

Prefix 
Symbol 

Multiplication 
Factor 

Pico p      × 10−12 

Nano n    × 10−9 

Micro μ    × 10−6 

Milli m    × 10−3 

Kilo k  × 103 

Mega M  × 106 

Giga G  × 109 

Tera T   × 1012 
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