Deriving Escape Velocity

We can derive escape velocity from Newton’s gravity force law:
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If we replace force F' with the classic definition of Newton'’s second law m-a, then we get:
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Cancelling terms, we have the general equation for the radial (centripetal) acceleration of a single, point
mass (here we replace m, with m):
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Escape velocity is the velocity that lets us leave the surface of a mass and never return. This means that
we always have a positive radial velocity and that radial velocity only approaches zero as distance from
the mass approaches infinity. We obtain escape velocity by integrating this equation with respect to r
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The expression on the right-hand side is straightforward; however, the expression on the left-hand side

dv
requires some adjustment. We start by replacing acceleration a with its definition: 7
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Rearranging we get:
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The derivative d_ is simply velocity v. This now gives us:
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To complete the adjustment, we must alter the limits of integration for the change of variable. At
r=r we havev =y ; and for ¥ =00, we have v =0, the definition of an escape velocity at
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infinity. This final change gives us:
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Which we now integrate:
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This is the standard equation for escape velocity.



