
Deriving Escape Velocity 
 
We can derive escape velocity from Newton’s gravity force law: 
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If we replace force F  with the classic definition of Newton’s second law m a⋅ , then we get: 
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Cancelling terms, we have the general equation for the radial (centripetal) acceleration of a single, point 
mass (here we replace 2m  with m ): 
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Escape velocity is the velocity that lets us leave the surface of a mass and never return.  This means that 
we always have a positive radial velocity and that radial velocity only approaches zero as distance from 
the mass approaches infinity.  We obtain escape velocity by integrating this equation with respect to r  
from surfacer r=  to r = ∞ : 
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The expression on the right-hand side is straightforward; however, the expression on the left-hand side 

requires some adjustment.  We start by replacing acceleration a  with its definition:  
dv
dt
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Rearranging we get: 
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The derivative 
dr
dt

 is simply velocity v .  This now gives us: 
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To complete the adjustment, we must alter the limits of integration for the change of variable.  At 

surfacer r=  we have escapev v= ; and for r = ∞ , we have 0v = , the definition of an escape velocity at 
infinity.  This final change gives us: 
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Which we now integrate: 
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And evaluate: 
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And solve for escapev : 
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This is the standard equation for escape velocity. 


