Higher Forces at Angles Answers

1. $v=5.6 \mathrm{~ms}^{-1}$.
2. $F_{F R}=4.01 \mathrm{~N}$.
3. a) $\mathrm{W}=\mathrm{mg} \sin \theta$.
b) $\mathrm{W}=\mathrm{mg} \cos \theta$.
4. a) $F=7.8 \mathrm{~N}$.
b) $\mathrm{a}=3 \mathrm{~ms}^{-2}$.
5. $\mathrm{F}_{\mathrm{FR}}=9.8 \mathrm{~N}$.
6. $F_{F R}=202.9 \mathrm{~N}$.
7. a) i) $F=136.8 \mathrm{~N}$
ii) $\mathrm{a}=2.86 \mathrm{~ms}^{-2}$.

b) The component of weight and frictional force are the same at all points on the slope.

This gives a constant unbalanced force and therefore a constant acceleration.
c) The frictional forces increase as the speed of the sledge increases.

Eventually the frictional force will be equal to the component of weight down the slope.
There will then be zero unbalanced force and the sledge will move at a constant speed in a straight line.
8. a) i) $W=6.7 N$.
ii)

iii) $\mathrm{a}=-4 \mathrm{~ms}^{-2}$. (Use $\mathrm{F}=\mathrm{ma}$)
iv) $t=0.75 \mathrm{~s}$.
v) $s=1.13 m$.
b) i)

ii) The unbalanced force accelerating the trolley down the slope is smaller.

This is due to the force of friction acting in the opposite direction to the component of weight.
9. $F_{F R}=170 N$.
10. a) $W=5.3 \times 10^{3} \mathrm{~N}$.
b) $\mathrm{a}=1.5 \mathrm{~ms}^{-2}$.
c) $E_{K}=3.25 \times 10^{5} \mathrm{~J}$.
11. a) $F_{H}=66.2 N$.
b) $F_{v}=35.2 \mathrm{~N}$.
c) $E_{w}=530 \mathrm{~J}$.
12. $E_{w}=766 \mathrm{~J}$.
13. $F_{H}=8.1 \mathrm{~N}$.
14. a) $F_{H}=7.5 \mathrm{~N}$.
b) $F_{v}=13 N$.
15. a) $F_{H}=4.04 \times 10^{6} \mathrm{~N}$.
b) $\mathrm{a}=0.05 \mathrm{~ms}^{-2}$.
c) $F_{F R}=4.04 \times 10^{6} \mathrm{~N}$ in the opposite direction to a).
16. $F_{F R}=671 \mathrm{~N}$ to the left.
17. a) i) $F_{v}=4.2 \times 10^{3} \mathrm{~N}$.
ii) $a=26 \mathrm{~ms}^{-2}$.
iii) The force exerted by the cord decreases with height and the tension decreases.
b) Both the occupants and the seats/capsules are accelerating towards the ground at $9.8 \mathrm{~ms}^{-2}$.
18. a) Maximum displacement at 1.5 s .

The trolley is moving away from the sensor for the first 1.5 s and then moves back towards the sensor from 1.5 s to 3.5 s . (Max area under the graph at 1.5 s)
b) $\mathrm{OA}=3 \mathrm{~ms}^{-2}$.

$$
\begin{aligned}
& \mathrm{AB}=-1.5 \mathrm{~ms}^{-2} \\
& \mathrm{BC}=-1 \mathrm{~ms}^{-2}
\end{aligned}
$$

Acceleration

$\mathrm{m}_{\mathrm{m}} \mathrm{s}^{2}$

c)

d) When moving up the slope $=>\mathrm{F}_{\text {unbalanced }}=\mathrm{F}_{\text {slope }}+\mathrm{F}_{\text {friction }}$

When moving down the slope $=>F_{\text {unbalanced }}=F_{\text {slope }}-F_{\text {friction }}$
19. a) $W=220 N$.
b) $\mathrm{a}=0.67 \mathrm{~ms}^{-2} .(U \operatorname{sing} \mathbf{a}=\mathbf{F} / \mathbf{m})$
c) $\mathrm{v}=8.2 \mathrm{~ms}^{-1}$.
d) Mass is smaller.

Smaller component of weight.
Smaller unbalanced force.
Smaller acceleration.
Smaller speed at the bottom of the slope.
20. $\mathrm{F}_{\mathrm{R}}=890 \mathrm{~N} @ 183^{\circ}$.

