

- **1.** v = 5.6ms⁻¹.
- **2.** F_{FR} = 4.01N.
- **3.** a) W = mg sin θ .
 - b) W = mg $\cos\theta$.
- **4.** a) F = 7.8N.

b) $a = 3ms^{-2}$.

- **5.** $F_{FR} = 9.8N$.
- **6.** $F_{FR} = 202.9N$.
- **7.** a) i) F = 136.8N
 - ii) a = 2.86ms⁻².

b) The component of weight and frictional force are the same at all points on the slope.

This gives a **constant unbalanced force** and therefore a **constant acceleration**.

c) The frictional forces increase as the speed of the sledge increases.

Eventually the **frictional force** will be **equal** to the **component of weight** down the slope.

There will then be **zero unbalanced force** and the sledge will move at a constant speed in a straight line.

8. a) i) W = 6.7N.

ii)

iii)
$$a = -4ms^{-2}$$
. (**Use F = ma**)

- iv) t = 0.75s.
- v) s = 1.13m.

b) i)

ii) The unbalanced force accelerating the trolley down the slope is smaller.

This is due to the force of friction acting in the opposite direction to the component of weight.

9. $F_{FR} = 170N$.

- **10.** a) W = 5.3 x 10^3 N.
 - b) a = 1.5ms⁻².
 - c) $E_{K} = 3.25 \times 10^{5} J.$
- **11.** a) F_H = 66.2N.
 - b) $F_v = 35.2N$.
 - c) $E_w = 530 J$.
- **12.** E_w = 766J.

13. F_H = 8.1N.

14. a) F_H = 7.5N.

b) $F_v = 13N$.

15. a) $F_{H} = 4.04 \times 10^{6} N.$

- b) $a = 0.05 \text{ms}^{-2}$.
- c) $F_{FR} = 4.04 \times 10^6 N$ in the opposite direction to a).
- **16.** $F_{FR} = 671N$ to the left.

17. a) i) $F_v = 4.2 \times 10^3 N$.

ii) $a = 26 \text{ms}^{-2}$.

iii) The force exerted by the cord decreases with height and the tension decreases.

b) Both the occupants and the seats/capsules are accelerating towards the ground at 9.8ms⁻².

18. a) Maximum displacement at 1.5s.

The trolley is moving away from the sensor for the first 1.5s and then moves back towards the sensor from 1.5 s to 3.5s. (Max area under the graph at 1.5s)

b) $OA = 3ms^{-2}$.

 $AB = -1.5 m s^{-2}$.

 $BC = -1 ms^{-2}$.

d) When moving up the slope => $F_{unbalanced} = F_{slope} + F_{friction}$ When moving down the slope => $F_{unbalanced} = F_{slope} - F_{friction}$

19. a) W = 220N.

- b) $a = 0.67 \text{ms}^{-2}$. (Using **a = F/m**)
- c) $v = 8.2 \text{ms}^{-1}$.
- d) Mass is smaller.

Smaller component of weight.

Smaller unbalanced force.

Smaller acceleration.

Smaller speed at the bottom of the slope.

20. $F_R = 890N @ 183^\circ$.