Higher Gravitation Answers

1. F - Gravitational force of attraction $->\mathbf{N}$.

G - Universal constant of gravitation $->6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ or $\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.
\mathbf{m}_{1} - mass of object $1->\mathbf{k g}$
$\mathbf{m}_{\mathbf{2}}$ - mass of object $2->\mathbf{k g}$
\mathbf{r} - distance between object 1 and object $2->\mathbf{m}$. (This is measured from the centre of each object!!)

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

2. a) Strong nuclear force, weak nuclear force and the electromagnetic force.
b) Strong nuclear force, weak nuclear force, electromagnetic force and the gravitational force.
3. $F=8.0 \times 10^{-8} \mathrm{~N}$.
4. a) From

$$
\begin{gathered}
F=G \frac{m_{1} m_{2}}{r^{2}} \\
G=\underline{\mathrm{Fr}^{2}} \Rightarrow \mathrm{G}=\mathrm{Nm}^{2} \mathrm{~kg}^{-2}
\end{gathered}
$$

b) From $F=m a->1 N=1 \mathrm{kgms}^{-2}$

$$
\Rightarrow \mathbf{N m}^{2} \mathbf{k g}^{-2}=\left(\mathrm{kgms}^{-2}\right) \mathrm{m}^{2} \mathrm{~kg}^{-2}=\mathbf{m}^{3} \mathrm{~kg}^{-1} \mathbf{s}^{-2} .
$$

5. $F=3.56 \times 10^{26} \mathrm{~N}$.
6. $F=1124 N$.
7. a) Weight = Gravitational force

$$
\Rightarrow \mathrm{mg}=\underline{\mathrm{GMm}}
$$

$$
=\mathbf{g}=\frac{r^{2}}{\mathbf{r}^{2}}
$$

b) i) $g=8.65 \mathrm{Nkg}^{-1}$.
ii) $\mathrm{T}=5549 \mathrm{~s}$.
8. a) Gravitational force is the force or weight acting on unit mass. $\mathbf{N k g}^{\mathbf{- 1}}$.
b) i) Weight $=$ Gravitational force

$$
\begin{array}{r}
=>m g=\frac{G M m}{r^{2}} \\
=>G=\frac{\mathbf{g r}^{2}}{\mathbf{M}}
\end{array}
$$

ii) $G=\underline{26.4 \times\left(70,000 \times 10^{3}\right)^{2}}=6.67 \times \mathbf{1 0}^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} . \quad=>$ QED 1.94×10^{27}
9. Weight = Gravitational force

$$
\begin{aligned}
\Rightarrow \mathrm{mg} & =\frac{\mathrm{GMm}}{\mathrm{r}^{2}} \\
\Rightarrow \mathrm{~g} & =\frac{\mathrm{GM}}{\mathrm{r}^{2}} \\
\mathbf{g r}^{2} & =\mathrm{GM} \text { => a constant }
\end{aligned}
$$

a) $r_{2}=8.49 \times 10^{5} \mathrm{~m}$.
b) $\mathrm{g}=18 \mathrm{Nkg}^{-1}$.
10. $M=1.09 \times 10^{26} \mathrm{~kg}$.

