Higher Refraction of Light Answers

- **1.** a) Water, n = 1.33.
 - b) Diamond, n = 2.42.
- **2.** a) n = 1.31.
 - b) $\lambda_R = 496 \text{ nm}$.
 - c) $v_R = 2.29 \times 10^8 \text{ ms}^{-1}$.
 - d) $f_R = 4.62x10^{14} Hz$.
 - e) The same.
- 3. a) $n = Sin A^{\circ}/Sin Q^{\circ}$.
 - b) $n = 1.53 \pm 0.01$.
- **4.** a) Water = 48.8° .
 - b) Crown Glass = 41.8°.
 - c) Diamond = 24.4° .

5. a) Glycerol = 42.9° .

Refraction

AIR 67.4° GLYCEROL 38.9°

At Critical Angle

T.I.R

6. a)
$$A = 22.4^{\circ}$$
.

b)
$$B = 37.6^{\circ}$$
.

c)
$$C = 70.0^{\circ}$$
.

7. a)
$$v_R = 1.97x10^8 \,\text{ms}^{-1}$$
.

b)
$$v_V = 1.95x10^8 \,\text{ms}^{-1}$$
.

c)
$$X = 0.4^{\circ}$$
.

8.
$$\theta_{\rm w} = 58.7^{\circ}$$
.

9. a) i)
$$X = 31.9^{\circ}$$
.

b) The beam of light will **totally internally reflect at normal 2**. This is due to angle Y being greater than the critical angle for Perspex. **(58.1°> 41.5°)**

b) i)
$$v_w = 2.26 \times 10^8 \,\text{ms}^{-1}$$
.

ii)
$$v_{CG} = 2 \times 10^8 \,\text{ms}^{-1}$$
.

c)

i)
$$\lambda_W = 323$$
nm.

ii)
$$\lambda_{CG} = 287$$
nm.

11.

a)
$$n_p = 1.43$$

b)
$$f = 4.85 \times 10^{14} Hz$$
.

12. i)
$$\lambda_{Quartz} = 329$$
nm.

- ii) As the wavelength of visible light increases the refractive index of the $quartz(n_{quartz})$
- decreases. This means that $(1/n_{quartz})$ increases and therefore $\theta_{critical}[sin^{-1}(1/n_{quartz})]$

also increases.

- iii) Flint glass has a higher refractive index than crown glass for all wavelengths of light. It will produce
- a larger spread of the visible spectrum and will be lower down the screen.

13. a)
$$n_{plastic} = 1.49$$

b) i)
$$\theta_c = 44^{\circ}$$
.

ii) Ray Q will be refracted and partially reflected.
Ray P will be totally internally reflected because the incident angle of 45° is greater than the critical angle.

14. a) $\theta_c = 48.8^\circ$. As the incident light angle is greater than the critical angle then T.I.R occurs.

b)
$$n = 1.43$$
.

c)
$$\lambda = 456$$
nm.

ii) A larger refractive index gives a greater change in direction and so $\theta_{\text{air}} {>} 82^{\circ}$

b)

liquid

$$\theta_c$$
 = 44°. (By calculation!!!)

45° > 44°. So Total Internal Reflection occurs.