

Higher Special Relativity Answers

- **1.** a) t'- dilated time, t proper time, v speed of the object and c speed of light = $3 \times 10^8 \text{ms}^{-1}$.
 - b) t' = tY.
 - c) The dilated time (t') is always greater.
- **2.** a) t' = 20 hours.
 - b) t = 5.28ms.
 - c) v = $1.66 \times 10^8 \text{ms}^{-1}$.
- At low speeds where v < 0.4c, there is no real difference between the dilated time (t') and the proper time (t).

At higher speeds where v > 0.4c, a difference is noticeable between the dilated time (t') and the proper time (t). (t' > t)

At extremely high speeds where v > 0.8c, a big difference is noticeable between the dilated time (t') and the proper time (t). (t' >>> t)

- **4.** a) t = 50 minutes.
 - b) t = 83.3 minutes.
 - c) The relativistic effects are only appreciable when an object is travelling at speeds near to the speed of light.
- 5. a) The clock on the spaceship will be running slower than a clock on Earth. However if you were the twin on the space mission the clock would have been working correctly as far as you were concerned.
 - b) 5.7 years.
- **6.** t = 15.2 billion years.
- **7.** $v = 1.98 \times 10^8 \text{ms}^{-1}$.

- **8.** $t = 2.72 \times 10^{-4} s.$
- **9.** a) l' contracted length, $I proper length, v speed of the object and c speed of light = <math>3 \times 10^8 \text{ms}^{-1}$.
 - b) l' = l / γ.
 - c) The proper length (I) is always greater.
- **10.** a) l' = 31cm.
 - b) l = 1519m.
 - c) v = $1.92 \times 10^8 \text{ms}^{-1}$.
- **11.** I = 600m.
- **12.** l' = 35.7m.
- **13.** $v = 1.14 \times 10^8 \text{ms}^{-1}$.
- **14.** I = 4.29m.
- **15.** a) v = $1.40 \times 10^8 \text{ms}^{-1}$.
 - b) $t = 2.91 \times 10^8 s$.
 - c) t = 2.57×10^8 s.