

Higher Hubble's Law and the Big Bang Questions

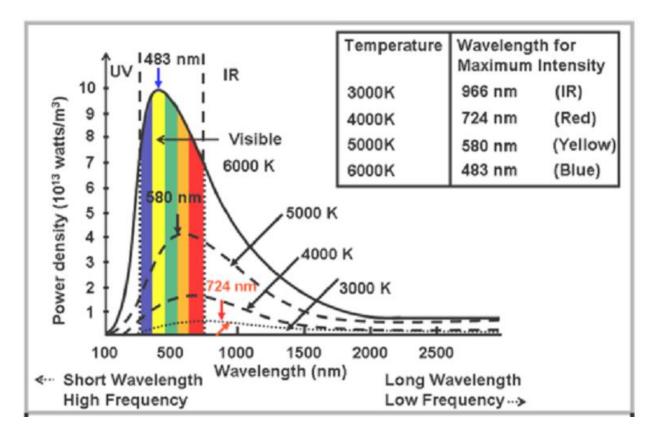
1. Hubble's Law is shown using the equation below.

$$v = H_0 d$$

- a) State the **quantities** and **units** in the equation.
- b) State any constant in the equation with its associated units.
- c) i) **Describe** the graph obtained for v against d?
 - ii) What does this tell us about the relationship between v and d?
 - iii) Which quantity is worked out from the gradient of the graph of v against d?
- 2. a) Show using Hubble's Law that the age of the universe can be worked out by using the formula

$$t = \frac{1}{H_o}$$

b) Hubble's Law can show that the **universe is expanding** and can also be used to find the **age of the universe**.


What assumption is being made in both of these cases?

- **3.** A galaxy is moving away from Earth at **0.087c**.
 - a) Convert **0.087c** into **ms⁻¹**.
 - b) Calculate the approximate distance of this galaxy from Earth in metres.

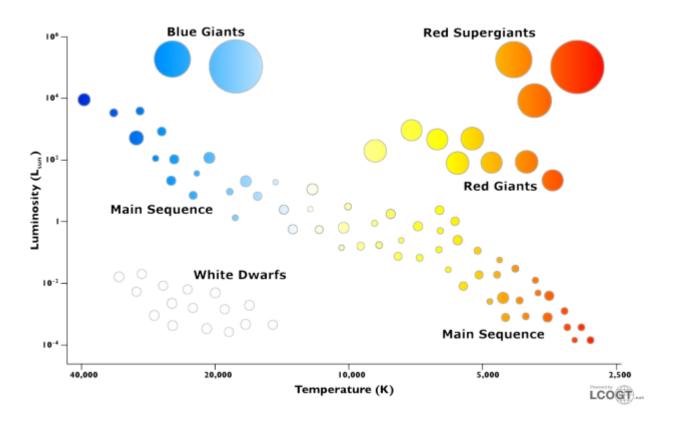
4. A distant galaxy is 20 light years away from Earth.

Use Hubble's Law to determine the velocity of the galaxy as it moves away from Earth.

- 5. A distant Quasar is moving away from Earth. One of the Hydrogen lines coming from the Quasar is observed to have a wavelength of 506nm from the same frame of reference. The same line is measured as having a wavelength of 486nm from a source on Earth. Calculate:
 - a) The **speed** at which the **Quasar** is moving away from Earth.
 - b) The **distance** that Quasar is from Earth **in light years**.
- 6. a) State four pieces of evidence for the 'Big Bang Theory'.
 - b) Give a **brief description of each** of these four pieces of evidence.
- 7. a) What is a 'blackbody radiator'?
 - b) A star is not a perfect blackbody, but the blackbody radiation theory can still be applied to it.
 What assumptions are made here?
 - c) What information can we work out about stars from the blackbody radiation theory?
 - d) Which two pieces of information does this graph highlight?

8. Wien's Displacement law equation applied to blackbody radiation is written as:

 λ_{peak} T = 2.898 x10⁻³mK.


- a) State what each of these quantities mean.
- b) How can blackbody radiators be described as stellar thermometers?
- c) How could Wien's Displacement Law be used to measure the temperature of the Sun?
- d) State the relationship between the peak wavelength emitted from a blackbody radiator and its temperature.

9. Calculate the unknown quantities in the table below for a blackbody radiator using Wien's Displacement law.

<u>λ_{peak} (m)</u>	Temperature (K)
500 x10 ⁻⁹	(a)
(b)	20,000
1.5 x10 ⁻³	(c)
(d)	310

- **10.** Calculate the peak wavelength of radiation emitted by the Sun if it has a temperature of **5800K**.
- 11. a) What is meant by the term 'Dark Energy'?
 - b) What is meant by the term 'Dark Matter'?
 - c) Does 'Dark Energy' or 'Dark Matter' make up a **bigger percentage** of the **universe**?

12. The Hertzsprung – Russell diagram is shown below.

a) The Hertzsprung-Russell diagram was seen as a major step forward in our understanding of **'stellar evolution'**.

What does this mean?

b) In the H-R diagram luminosity is plotted against temperature.

Which three factors does this tell us about a star?

- c) Which colour of light represents stars of the lowest temperatures?
- d) i) Which colour of light represents stars of the highest temperatures?
 - ii) Explain why stars of higher temperature glow more brightly in the sky?