Higher Uncertainties Questions

1. What is meant by uncertainties caused by 'Systematic Effects'?
2. a) What is meant by the term 'Random Uncertainty'?
b) State the equation used to calculate random uncertainty.
3. a) How would you estimate the uncertainty from an analogue scale?
b) How would you estimate the uncertainty from a digital scale?
4. A 100 m sprinter recorded the following times over the course of a season:
$9.83 \mathrm{~s}, 10.03 \mathrm{~s}, 9.96 \mathrm{~s}, 10.14 \mathrm{~s}, 10.20 \mathrm{~s}$ and 10.08 s .
Calculate:
a) Mean time of the sprinter.
b) Random uncertainty in the times recorded.
c) Mean time \pm Random Uncertainty.
5. A golfer drives his shots off the tee and achieves the following distances:
$230 \mathrm{~m}, 243 \mathrm{~m}, 223 \mathrm{~m}, 248 \mathrm{~m}, 252 \mathrm{~m}, 235 \mathrm{~m}, 263 \mathrm{~m}$ and 234 m.
Calculate:
a) Mean range of the golf balls.
b) Random uncertainty in the range of the golf balls.
c) Mean Range \pm Random Uncertainty.
6. A pupil measures the speed of a trolley at the bottom of a slope with a QED and light gate arrangement.

The following speeds were recorded $0.89 \mathrm{~ms}^{-1}, 0.93 \mathrm{~ms}^{-1}, 0.85 \mathrm{~ms}^{-1}, 0.87 \mathrm{~ms}^{-1}$ and $0.91 \mathrm{~ms}^{-1}$. Calculate:
a) Mean speed of the trolley.
b) Random uncertainty in the speeds recorded.
c) Mean Speed \pm Random Uncertainty.
7. The following readings were taken during an Ohms Law experiment to measure resistance:

Voltage $=(14.00 \pm 0.05) \mathrm{V}$
Current $=(2.5 \pm 0.1) \mathrm{mA}$.
Calculate:
a) Resistance.
b) \% Uncertainty in Resistance.
c) Resistance \pm Absolute Uncertainty.
8. The following readings were taken in an experiment to calculate the unbalanced force on an object:

```
Mass = (250 \pm1) g
Acceleration = (5.00 \pm0.05) ms'2.
Calculate:
```

a) Unbalanced Force.
b) \% Uncertainty in the unbalanced force.
c) Unbalanced Force \pm Absolute Uncertainty.
9. The following readings were taken to calculate the Electrical Work Done on a charge in an electric field, where

Electrical Work Done = Charge x Voltage:

Charge $=(1.6 \pm 0.1) \times 10^{-19} \mathrm{C}$
Voltage $=(2500 \pm 50)$ V.
Calculate:
a) Electrical Work Done.
b) Percentage Uncertainty in the Electrical Work Done.
c) Electrical Work Done \pm Absolute Uncertainty.
10. A trolley is released from rest at a point X at the top of a ramp and passes a point Y half way down the slope.
The distance travelled by the trolley XY is measured with a metre ruler and the times are measured with a stopwatch.

Distance $X Y=(0.25 \pm 0.01) \mathrm{m}$.
Times $=1.41 \mathrm{~s}, 1.38 \mathrm{~s}, 1.36 \mathrm{~s}, 1.42 \mathrm{~s}, 1.37 \mathrm{~s}, 1.49 \mathrm{~s}, 1.43 \mathrm{~s}, 1.40 \mathrm{~s}, 1.38 \mathrm{~s}$ and 1.44 s.
Calculate:
a) Mean Time.
b) Random uncertainty in the mean-time recorded.
c) Mean Time \pm Random Uncertainty.
d) Average speed of the trolley.
e) \% uncertainty in the average speed.
f) Average Speed \pm Absolute Uncertainty.

