

- **1)** a) 16ms⁻¹.
 - b) 64m.
- 2) a) -2.5ms⁻².
 - b) 10m.
 - c) 0
- **3)** a) -1ms⁻².
 - b) 16m.
- **4)** a) 0.4ms⁻¹.
 - b) 0.8ms⁻¹.
- **5)** a) 7200m.
 - b) 1.5ms⁻¹.
- **6)** a)

- **7)** a) 0.6s.
 - b) 12,500ms⁻².
 - c) The speed that the ball leaves the racquet with is smaller.

8) a) Measuring Average Speed

- Measure the length/distance of track/ one lap
- Record the time taken for one lap
- Then use average speed = distance travelled / time taken
- b) Y-axis => Speed in metres per second

```
X- axis => Time measured in seconds
```

Straight line to origin from point where time = 4s and speed = 12ms⁻¹.

- c) 3ms⁻².
- 9) a) 220,000N.
 - b) i) 13,440m.
 - ii) 11.2ms⁻¹.
 - iii) 0.067ms⁻².
 - iv) 0.033ms⁻².
- 10) a) i) The log is accelerating.
 - ii) 118.75m = 119m (3 sig figs!!!)
 - iii) 2ms⁻².

b) Measuring Instantaneous speed

- Time taken for the log to pass through the light gate connected to a timer
- Measure the length of the log
- Instantaneous speed = length of the log / time to pass through the light gate