NATIONAL 5 PhYSICS

ELECTRICITY AND EnERGY

Conservation of Energy

Types of Energy

You should know from S1/S2 that there are several different types of energy:

- Gravitational Potential
- Elastic Potential
- Chemical Potential
- Electrical
- Light

Watch it

youtu.be/NsDEgmxH8wl
youtu.be/mhIOylZMg6Q

- Sound
- Kinetic
- Nuclear

You should also remember that all energy is measured in joules (J).

Law of the Conservation of Energy

The amount of energy in a system is fixed. Energy cannot be created or destroyed, only changed from one form into another. For instance a lift turns electrical energy into kinetic energy which is then turned into gravitational potential energy.

'Loss' of Energy

Even though energy cannot be destroyed it is normal to find that the energy put in is not the same as the energy out. For instance a lift uses a certain amount of electrical energy raising the lift. You can measure the electrical energy put in and calculate the gravitational potential energy of the lift. You would expect, given the law of the conservation of energy, that the two energies would be the same. However you would find that the energy put in is more than the energy. Where has this energy gone?

In real world situations no change of energy is perfect. There is always some sort of energy 'loss'. This is nearly always because some of the energy is changed into heat energy which is then transferred outside the system. For the example of the lift the lift's motor produced heat which then transfers to the room around the lift. Because this heat energy is almost impossible to recover we say that some energy has been 'lost'.

Summary

Energy is always conserved, but some can be lost, as heat, to the surroundings.

Kinetic Energy

Kinetic energy is the energy contained within a moving object. It is defined as being equal to one half multiplied by the mass of the object multiplied by the square of the object's speed. The formula for kinetic energy appears on the formula sheet and is given below:

Example

A runner reaches full speed during a 100 m race. If the runner has a mass of 75 kg , calculate the amount kinetic energy he has. In addition state the energy change that his body performs in reaching this speed.

Practice Problems

1. What is the kinetic energy of a 70 kg footballer running at $5 \mathrm{~ms}^{-1}$?
2. What is the kinetic energy of a 90 kg rugby player running at $4 \mathrm{~ms}^{-1}$?
3. An unknown mass has a kinetic energy of 400J when it is travelling with a velocity of $20 \mathrm{~ms}^{-1}$. What is the mass?
4. A lorry (mass 3000 kg) is moving at constant velocity. If it has a kinetic energy of $150,000 \mathrm{~J}$ - how fast is it travelling?
5. A car has a kinetic energy of 200 000J when it is travelling at $20 \mathrm{~ms}^{-1}$. What is the mass of the car?
6. A model race car of mass 10 kg is travelling along a circuit at a constant velocity. If it has a kinetic energy of 3125J - how fast is it travelling?

Gravitational Potential Energy

Gravitational potential energy is a measure of how much extra energy an object has when it is raised up off the ground. It is equal to the mass of the object times the height is has been raised by times the gravitational field strength of Earth (which is $9.8 \mathrm{Nkg}^{-1}$). The formula appears on the formula sheet and is shown below:

Example

A woman of mass 60 kg climbs a set of stairs. There are 20 stairs each measuring 0.15 m in height. How much gravitational potential energy does she gain?

Practice Problems

1. A 6 kg box is raised through a height of 10 m . Calculate the gain in gravitational potential energy of the box.
2. A student of mass 50 kg climbs a set of stairs. Each step is 0.2 m high and there are 18 steps. Calculate the gravitational potential energy gained by the student.
3. How high must you raise a 50 kg mass before it has a potential energy of $100,000 \mathrm{~J}$?
4. A crate has a potential energy of $2,000 \mathrm{~J}$ when it is 70 m above the ground. What is the mass of the crate?
5. How high must you raise a 1 kg mass before it has a potential energy of 20J?

Calculations Using the Law of the Conservation of Energy

Example

Oranges hang from a branch of a tree. An orange has a mass of 200 g and is at a height of 7 m above the ground. The orange falls to the ground.
a) Calculate the gravitational potential energy it has when it is hanging from the tree.
b) Assuming that air resistance is negligible, what will be the kinetic energy of the orange just before it hits the ground?
c) How fast will the orange be travelling just before it hits the ground.

Practice Problems

1. A ball of mass 0.5 kg is dropped from a tower which is 75 m high.
a) Before the ball is dropped, how much gravitational potential energy does it have?
b) Assuming all energy is transferred to kinetic energy, calculate the speed of the ball just before it reaches the ground.
2. A model rocket is fired straight up with an initial speed of $8 \mathrm{~m} / \mathrm{s}$. the rocket has a mass of 0.2 kg .
a) Calculate the initial kinetic energy of the rocket.
b) The mass of the rocket does not change. The rocket reaches its maximum height. What is the gravitational potential energy gained by the rocket?
c) Use your answer from b to calculate the maximum height reached by the rocket.
3. A car is being driven along a road at $15 \mathrm{~ms}^{-1}$. The total mass of the car and driver is 900 kg .
a) Calculate the kinetic energy if the car and driver.
b) The brakes are applied and the car is brought to rest outside a shop. Describe the energy change that has taken place.
c) How much heat energy will be stored in the brakes when the car stops?
d) About ten minutes later, the driver comes out of the shop and thinks he notices a problem with the brake disk and feels the disc. It feels cool. Where has the heat energy gone?

Electrical Charge Carriers and Current

Electrical Charge

Electrical charge exists in two distinct types - positive charge and negative charge. It is also possible for an object or particle to have no electrical charge at all, we call these objects electrically neutral.

Positively charged objects will repel other positively charged particles. However they will be attracted to negatively charged objects. Similarly negatively charged objects will repel other negatively charged particles but they will be attracted to positively charged objects. This can be remembered as two simple rules:

- Like charges repel
- Opposite charges attract

Neutrally charged objects are attracted to both positively charged and negatively charged objects.

Current

Electrical current is simply the flow of charge carriers. In a standard electrical circuit the charge carriers are electrons. As an example consider the circuit below:

Electrons are repelled away from the negative terminal of the battery and attracted to the positive terminal of the battery. To move from the negative terminal to the positive terminal they need to move around the circuit through the lamp (as shown below).

We call this negative to positive current electron flow or more usually just current.

However scientists used to think that charges flowed from positive to negative. If these scientists were alive today they would probably argue that they were still correct and that an absence of an electron (or hole) flows from positive to negative. Nevertheless it was thought that current flows from positive to negative for many years and circuit symbols and diagrams often make more sense if you do think about current flowing from positive to negative. Today we call this conventional current. At National 5 we will only ever talk about electron flow but if you look at English or American materials they almost exclusively use conventional current. Remember:

- Current (Electron Flow) - negative to positive
- Conventional Current - positive to negative

Current, Charge, Time Formula

We define current as the amount of charge flowing past a point in a circuit per second. Current is measured in amperes, or amps for short. One amp is equal to one coulomb (the unit of charge) per second. The formula for this is on the formula sheet and is given below:

Charge
measured in

Current measured in amperes or

Time measured in seconds (s)

Example

A lamp has a current of 1.5 amperes flowing through it while lit. How much charge flows through the lamp in 50 seconds?

Practice Problems

1. The current in a heater is 7 amperes. How many Coulombs of charge flow through the heater in 30 seconds?
2. The total charge that flows in a circuit is 12C. The time taken for this charge to flow is 6 s . What is the current flowing in the circuit?
3. A car headlamp uses a current of 2 A . How long must the lamp be switched on for 10C to pass through it?
4. A hair dryer is switched on for 5 minutes and the current flowing is 3A. How much charge flows through the hairdryer in this time?
5. What is the current when 4 C of charge passes a point in 0.4 s ?
6. How much charge passes through a cow if it touches an electric fence and receives a pulse of 20 milliamperes (mA) for 0.1 seconds?
7. A torch lamp passes 720C of charge in 1 hour. What is the current in the lamp?

Alternating and Direct Current (a.c./d.c.)

When current flows from negative to positive we call this direct current. Direct current is supplied by batteries and some specialist power supplies. However the electricity in a mains socket does not have a positive and negative terminal - instead it uses alternating current.

Alternating current does not have a positive and negative, instead the direction of the current changes, usually many times a second. In the United Kingdom mains electricity uses alternating current with a frequency of 50 Hz . This means that in one second the current changes from flowing in one direction to another and back 50 times.

Circuits that use alternating current do not have positive and negative terminals, instead they use live and neutral terminals and wires. Some high voltage circuits will also include an earth wire as a safety measure. In the U.K. there is a common standard defining the colour of insulation on these wires:

- Live - Brown
- Neutral - Blue
- Earth — Yellow and Green stripes

Electric Fields and Potential Difference

Electric Fields

Any electrically charged object emits an electric field. The strength of the electric field depends on how much charge the object has - and how far away from the object you are. The shape of the field is determined by the shape of the object. These fields can exert a force on other charged particles. We can visualise electric fields by drawing arrows showing what direction an imaginary positive test charge would travel. For instance: Below is the electric field around a negatively charged sphere, like a Van der Graph generator or an electron:

A positive charge placed anywhere around this negatively charged sphere would be attracted towards it - just as we would expect.

Parallel Plates

There is a special type of electric field that we can create when we set up two metal plates (one positive and one negative or neutral) parallel to each other and separated by an insulator. The field between this arrangement of parallel plates looks like this:

A positive charge anywhere between the two plates will be attracted towards the negative plate and repelled from the positive plate. In other words a positively charged particle would move towards the negative plate. Conversely a negatively charge particle would move towards the positive plate.

Imagine that you could put a negatively charged particle (say an electron) on the negative plate. It would want to move towards the positive plate. If it was allowed to travel across the gap it would gain kinetic energy. However if it cannot move across the gap it will try to find another route to the positive plate - for instance through an electrical circuit.

Potential Difference/Voltage

Consider again the two parallel plates:

Imagine we tried to drag a positively charged particle from the negative plate to the positive plate. Energy had to be given to the charged particle to move it against the direction of the electric field. In Physics we would say work is done (we will revisit the idea of work in the Dynamics and Space unit).

Imagine that the particle is now released from the positive plate. Before the charged particle is released it has electrical potential energy and when it is released this is converted to kinetic energy.

We say that the plates have a voltage across them or potential difference between them. If a potential difference is applied to either end of a conductor electrons will flow towards the positive end and away from the negative end - causing a current.

When electrons move through an electrical component (such as a lamp) they may convert some of their electrical energy into other forms (such as light). This means they will 'loose' some electrical energy and so their voltage will be less. This can be measured and the amount of potential difference or voltage across a component is linked to the amount of energy lost by the electrons in the component. The higher the voltage the more energy lost by the electrons.

Extension - Voltage formula

Voltage can be thought of as the amount of energy a charged particle has per coulomb of charge. One volt is defined as one joule per coulomb. There is a formula for this, though it is not needed at National 5 for calculations it can be useful when answering "explain" type questions.

OHM's LAW

Ohm's Law Experiment

Aim: To determine the relationship between voltage and current.
Hypothesis: As current increases the voltage increases/decreases.
Method: Set up the circuit as shown by your teacher and record the readings of current and voltage in the table below:

Voltage (V)	Current (A)

Analysis: Draw a scatter graph with a line of best fit of your results with voltage on the y axis and current on the x axis. Then calculate the gradient of your line of best fit.

Conclusion: As current increases the voltage increases/decreases.

How does the value of the gradient compare with the resistance of the resistor used in the experiment?

Resistance

As seen in the previous experiment the gradient of a V/I graph is equal to the resistance of a component. Resistance is a measure of how hard it is for electrons to flow through a component or wire. Resistance is measured in ohms (Ω).

Lots of things can affect the resistance of a component or wire. For an ordinary conducting wire the following factors affect resistance:

- Length - the longer wire the higher the resistance
- Area - the smaller the cross sectional area of a wire the higher the resistance
- Material - some conductors are better than others!
- Temperature - the higher the temperature the higher the resistance

The relationship between temperature and resistance is particularly important as some components heat up in use, changing their resistance.
Some materials can be cooled so much that their resistance drops to zero becoming a superconductor.

Georg Ohm (16 March 1789 - 6 July 1854)

Ohm's Law Formula

Today we summarise Georg Ohm's work on voltage and current as a formula stating that the voltage across a component (or conductor) is equal to the current flowing though the component multiplied by the resistance of the component. It appears on the formula sheet and is given below:

Example

A battery supplies a lamp of resistance 10Ω with a current of 0.2 A . What is the voltage supplied by the battery?

Practice Problems

1. A current of 2 A flows through a heating element of resistance 60Ω. What is the voltage supplied to the element?
2. A bulb is rated at 2.2 V and 0.2 A . What is its resistance when it is used at its correct rating?
3. An electrical supply of 12 V is supplied to a $10 \mathrm{k} \Omega$ resistor. What current flows in the resistor?
4. The voltage supply to a circuit is doubled but the resistance is kept the same. How does this affect the amount of current that flows in the circuit?

Practical Circuits

Circuit Symbols

It would be impractical and confusing to draw an electrical circuit as a picture. Instead all electrical components are represented by unique and standardised symbols connected with lines (representing wires) in a circuit diagram. Below are the symbols you will need to recognise, what they represent, what that component does and an example use.

Symbol	Component	Function	Example Application
	diode	controlling current direction	a.c. to d.c adapters
	light emitting diode (LED)	producing light	on/off indicator lights
	microphone	converting sound to electrical signals	telephone
	loudspeaker	producing sound	headphones
	photodiode	detecting light	light gate
1	fuse	limiting current	standard U.K plug
	capacitor	storing charge, smoothing, time delays	various
	thermistor	detecting temperature changes	thermostats
	light dependant resistor (LDR)	detecting light changes	street lighting
	relay	circuit connecting switch	car ignition

Symbol

Series Circuits

Series circuits are constructed by 'daisy chaining' components together. The circuit shown below is an example of a typical series circuit:

Current in a Series Circuit

The current in a series circuit is the same at every point in the circuit.

Voltage in a Series Circuit

The voltages in a series circuit are 'shared' amongst the components. The voltages across all of the components in the circuit add up to the voltage of the supply. There is a formula to help you to remember this but it is not on the formula sheet:

$$
V_{\mathrm{S}}=V_{1}+V_{2}+\ldots
$$

Below is an example of this rule in a series circuit:

Resistance in a Series Circuit

The total resistance of a series circuit is equal to the sum of all of the resistances of the components. There is a formula for this and does appear on the formula sheet:

$$
R_{\mathrm{T}}=R_{1}+R_{2}+\ldots
$$

Parallel Circuits

Parallel circuits are constructed by placing each component on its own 'branch'. The circuit shown below is an example of a typical parallel circuit:

Current in a Parallel Circuit

The currents in each of the branches add up to the current entering and leaving the power supply.

Voltage in a Parallel Circuit

The voltage on every branch of a parallel circuit is the same. If the branches are connected directly to the power supply then the voltage in each branch will be the same as the voltage across the power supply.

Resistance in a Parallel Circuit

The total resistance of a parallel circuit is a little tricky to calculate. One over the total resistance is equal to the sum of one over the resistance of each brach. The formula for this appears on the formula sheet and is given below:

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots
$$

Practice Problems

1. A resistor of 3Ω is in series with another resistor of 3Ω. What is the total resistance?
2. The two 3Ω resistors are now joined in parallel. What is the total resistance now?
3. The resistance of one Christmas tree light is 24Ω. What is the total resistance of 20 lights in series?
4. In the diagram below, the total resistance across $A B$ is measured and found to be 25Ω.

What is the resistance of R_{2} ?
5. Two 10Ω resistors are connected in parallel. What is their total resistance?
6. What is the total resistance across AB in the circuit below?

7. Two bars of an electric fire are joined in parallel. If each of the bars has a resistance of $1 \mathrm{k} \Omega$.
a) What is the total resistance?
b) If the bars are connected to a 230 V power pack, what current will be supplied?
c) What current will flow in each of the bars?
8. Four resistors are connected as shown in the circuit diagram below.

a) What is the total resistance of the resistors in parallel?
b) What is the total resistance in the circuit?
c) The current through R_{1} is found to be $2 A$. What is the current flowing through R_{2} ?
d) If the voltage across R_{3} is 8 V , what is the voltage across R_{4} ?
e) What is the current flowing through R_{3} ?

Power

Power is defined in Physics as the amount of energy something uses every second. On electrical alliances the power of an appliance is given by its power rating. This can be found on the rating plate.

As you can see above the power rating of this appliance is 240 W . That means it uses 240 joules of energy every second. The W stands for watts - the units of power. 1 watt is equal to 1 joule per second. However power can be calculated for any form of energy not just electrical energy.

Power, Energy and Time Formula

Power is equal to energy divided by time. The formula appears on the formula sheet and is given below:

Practice Problems

1. If a CD player supplies 100 J of sound energy per second, what is its power rating?
2. A heater supplies 3000 J of heat energy in 5 seconds. What is its power rating?
3. A miniature water heater is rated at 750 W . How many joules of heat energy will it produce each second?
4. A heater is rated at 3 kW . How much energy does it supply in one hour of use?
5. A miniature heater for making cups of tea is rated at 150 W . If it takes 45kJ to boil the water, how long will this take?
6. A lamp converts 1000J of electrical energy into light energy in 10s.
a) How much electrical energy does it convert every second?
b) What is the power rating of the lamp?
7. If it requires 450kJ of energy to boil a kettle of water, how long will this take if the power rating of a kettle is 2 kW ?
8. An electric shower rated at 10 kW is switched on for 5 minutes. How much energy will it use up?

Electrical Power Formula

It is simple to calculate the amount of power an electrical appliance is using. The electrical power used is equal to the current multiplied by the voltage. The formula appears on the formula sheet and is given below:

Practice Problems

1. What is the power rating of a car sidelight that is supplied with 0.5 A of current from a 12 V supply?
2. An electric heater is rated at 3 kW and is connected to a mains supply of 230 V . What is the current that flows through it?
3. What is the supply voltage to a hairdryer which uses a power of 920 W and a current of 4A?

More Power Formulae

We can combine $\mathrm{P}=\mathrm{IV}$ and $\mathrm{V}=\mathrm{IR}$ (Ohm's Law) to make two additional formulae for electrical power. Both are on the formula sheet and are given below:

Practice Problems

1. What is the power rating of a bulb of resistance 18Ω if the correct current supply is 2 A ?
2. An engineer is designing a fire and reads a data book stating that a 26.5Ω resistor can safely handle a power of 2 kW . What is the maximum current it can safely handle?
3. The heating element of a hairdryer is supplied with 920 W of electrical power at a current of 4 A . What is the resistance of the element?
4. A 36 W bulb has a resistance of 9Ω. What current flows through the bulb when it is operating at its correct power rating?
5. An electric fire operating at its correct power rating of 1 kW has an element with resistance of 53Ω. What voltage is required to operate this appliance properly?
6. Find the power ratings of the following appliances:
a) A 12 V bulb that takes a current of 1.5 A
b) A 230 V drill that takes a current of 2.5 A
7. A 60 W car windscreen heater operates at 12 V . Find the current it uses.
8. A digital watch has a power rating of 0.12 W and takes a current of 0.08 A . What would be the voltage of the battery it uses?
9. A mains operated electric oven has two power settings, 3kW (low) and 5 kW (high). Calculate the current it uses at both low and high settings.

Specific Heat Capacity

Temperature and Heat

The temperature of an object is a measure of how hot or cold an object is. The hotter an object is the faster the particles inside the object move about. In other words temperature is a measure of the mean kinetic energy of the particles in an object. In Physics temperature is measured in Celsius or Kelvin, never Fahrenheit. Heat is how much heat energy a substance contains. It is linked to temperature but is not the same.

Specific Heat Capacity

Different substances require different amounts of energy to heat them up. We measure this by working out the amount of energy required to heat 1 kg of a substance by $1^{\circ} \mathrm{C}$. This is called the specific heat capacity and is measured in joules per kilogram per degree celsius or $\mathrm{Jkg}^{-10} \mathrm{C}^{-1}$. For instance the specific heat capacity of water is $4180 \mathrm{Jkg}^{-10} \mathrm{C}^{-1}$, water requires 4180 J of energy to raise the temperature of 1 kg of water by $1^{\circ} \mathrm{C}$. Substances with a lower heat capacity are easier to heat up. Substances with a higher specific heat capacity are harder to heat up.

Specific Heat Capacity Formula

We can calculate the amount of heat energy in, added to or lost by an object by multiplying the specific heat capacity of an object by the objects mass and the objects change in temperature (in Celsius or Kelvin). The formula appears on the formula sheet and is given below:

Example Question

How much heat energy is required to bring 0.2 kg of water to boiling point from $15^{\circ} \mathrm{C}$? You may assume that the specific heat capacity of the water is $4180 \mathrm{Jkg}^{-1 \circ} \mathrm{C}^{-1}$.

Practice Problems

1. How much energy is required to heat up 1 kg of sea water (of specific heat capacity $3,900 \mathrm{Jkg}^{-1} \mathrm{C}^{-1}$) by $1^{\circ} \mathrm{C}$?
2. A 4 kg bar of aluminium (of specific heat capacity $900 \mathrm{Jkg}^{-10} \mathrm{C}^{-1}$) is supplied with 1800 J of heat energy. What temperature increase would be measured?
3. A cup of boiling water (of specific heat capacity $4,200 \mathrm{Jkg}^{-10} \mathrm{C}^{-1}$) cools down from $95^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$. If the mass of water in the cup is 0.1 kg , how much heat energy is lost?
4. An immersion heater is used to heat 30 kg of water at $12^{\circ} \mathrm{C}$. The immersion heater supplies 8.6 MJ of heat. Ignoring heat losses to the surroundings calculate the final temperature of the water.
5. A 250 g block of copper is allowed to cool down from $80^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$. How much heat energy will it give out?
6. During an experiment, a girl supplies $12,000 \mathrm{~J}$ of energy to 0.25 kg of water in a glass container.
a) What should the temperature increase be?
b) She finds the temperature increase is less than expected. Explain why this might have happened.
c) How could she reduce this heat loss?
7. Which of the following would give out more heat energy?

A - a 2 kg block of aluminium as it cools from $5^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
B - a 4 kg block of copper as it cools from $83^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?

More Practice Problems

1. Fire clay blocks of specific heat capacity $800 \mathrm{Jkg}^{-10} \mathrm{C}^{-1}$ are used in a night storage heater.
a) If 60 kg of blocks are heated by $100^{\circ} \mathrm{C}$, how much heat energy is supplied to the blocks?
b) If the heater has an output power rating of 1 kW , how long will it take to heat the blocks?
c) In practice it takes longer to heat the blocks. Suggest a reason for this.
2. Oil filled radiators are a useful means of providing heating in a room. An electrical element heats up the oil inside the radiator which contains 2 kg of oil of specific heat capacity $2,500 \mathrm{Jkg}^{-1{ }^{\circ}} \mathrm{C}^{-1}$.
a) If the temperature of the oil is raised from $15^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, how much heat energy is supplied to the oil?
b) The heater takes 8 minutes to heat the oil through the above temperature change. What is the output power of the heating element?
c) The element works at 230 V . What is the current in the element while it is heating the oil? Assume the heating element is 100% efficient.
3. An electric cooker has a 500W heating element. It takes the heating element 5 minutes to raise a 1 kg pan of water from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
4. What value does this information give for the specific heat capacity of water?
5. Why is this value lower than it should be?

Kelvin

In Physics we often use the Kelvin temperature scale instead of Celsius. One kelvin and one celsius are the same however the Kelvin scale starts at a different temperature. Whilst zero on the Celsius scale is at the freezing point of water the Kelvin scale has zero at 'absolute zero' - the temperature at which all particle motion stops - which is at $-273^{\circ} \mathrm{C}$.

- To go from kelvin to celsius you subtract 273
- To go from celsius to kelvin you add 273

Practice Problems

1. Convert the following temperatures from celsius to kelvin:
a) $0^{\circ} \mathrm{C}$
b) $100^{\circ} \mathrm{C}$
c) $-273^{\circ} \mathrm{C}$
d) $22^{\circ} \mathrm{C}$
e) $500^{\circ} \mathrm{C}$
2. Convert the following temperatures from kelvin to celsius:
a) 300 K
b) $\quad 5000 \mathrm{~K}$
c) 267 K
d) 4 K
e) 423 K

GAS LAWS

Pressure

In Physics pressure is defined as the amount of force per unit area. More simply pressure is equal to the force divided by the area it is acting on. Pressure is measured (in Physics) in either newtons per square metre or pascals. We do not use units such as bars, atmpospheres, pounds per square inch or millimeters (or inches) of mercury in National 5. There is a formula for pressure that appears on the formula sheet and it is given below:

Note that a P is used for both pressure and power on the formula sheet. Do not confuse the two!

Practice Problems

1. A cube of side 3 m is sitting on a bench. If the mass of the cube is 27 kg , what is the pressure on the bench?
2. A man of mass 70 kg is standing still on both feet. The average area of each foot is $0.025 \mathrm{~m}^{2}$.
a) Calculate the force the man exerts on the ground (his weight in N).
b) Calculate the pressure exerted by the man on the ground.
c) If the man now stands on only one foot, calculate the pressure this time.
3. A man of mass 60 kg is standing on a block of wood measuring $0.28 \mathrm{~m} \times 0.08 \mathrm{~m}$. Calculate the pressure on the ground.
4. A woman of mass 60 kg stands on one high heeled shoe. The area of sole in contact with the ground is $1.2 \times 10^{-3} \mathrm{~m}^{2}$. The area of the heel in contact with the ground is $2.5 \times 10^{-5} \mathrm{~m}^{2}$. Calculate the pressure on the ground.
5. Although the man in question 4 and the woman in question 5 had the same mass, they did not have the same pressure. Explain why this is the case.
6. Why is it necessary to wear snow shoes to walk over soft snow?

Kinetic Model of a Gas

In Physics we assume that in gases, small particles are far apart and move in random directions at high speed. On average they are 10 molecular diameters apart and move at speeds of around $500 \mathrm{~ms}^{-1}$. They can collide with the walls of the container and with each other. Increasing the temperature of a gas increases the average speed of the particles. You know from S1/2 that the volume and shape of a gas is determined by the volume and shape of its container.

This model, which can be used to explain a number of properties of a gas, is called the kinetic theory model.

Practice Problems

1. What two things can you say about the movement of the particles in a gas (i.e. speed, direction of movement)?
2. How does raising the temperature of the gas affect the particles in the gas?
3. What determines the "shape" of a gas?
4. If a jar of gas was opened in the middle of your classroom what would the gas do and what would determine the new volume of the gas?

Pressure of a Gas

The particles in a gas often collide with the walls of their container. Billions of them do this every second. Each particle exerts a tiny force on the wall of the container as it collides with it. The addition of the forces from these many collisions can become very large. The average size of this overall force divided by the area of the container gives the pressure of the gas.

Practice Problems

1. Air molecules exert an average force of $6 \times 10^{5} \mathrm{~N}$ on a wall. The wall measures $2 \mathrm{~m} \times 3 \mathrm{~m}$. What is the air pressure in the room?
2. Hydrogen molecules at low pressure exert an average force of $3 \times 10^{4} \mathrm{~N}$ on one wall of a cubic container. One edge of the cube measures 2 m . Calculate the pressure of the hydrogen.
3. The pressure of air at sea level is approximately $1 \times 10^{5} \mathrm{~Pa}$. What is the average force that air molecules exert on a wall at sea level measuring $3 \mathrm{~m} \times 5 \mathrm{~m}$?
4. Comment on the force exerted on an identical wall $10,000 \mathrm{~m}$ above sea level.

Boyle's Law (Pressure and Volume in a Gas)

If a gas is compressed, its volume is decreased, then the particles within the gas will become closer together. This means that they will hit the walls of their container more often. In turn this will increase the pressure of the gas. Conversely if a gas is expanded, its volume is increased, then the pressure will decrease.

Amontons' Law (Pressure and Temperature in a Gas)

If a gas is heated and its temperature increases the particles in the gas will strat to move faster. This means that they impact on the walls of the container with more force which causes the pressure of the gas to increase. Conversely if a gas has its temperature decreased then its pressure will also decrease. This is why deodorant sprays feel cold!

Amontons' Law only works when the temperature is measured in Kelvin.
When dealing with gasses always use Kelvin.

Charles' Law (Volume and Temperature in a Gas)

If you decrease the temperature of a gas then the particles in the gas will start to slow down. They will push less hard on their container and if it is able to do so the container will shirk, decreasing its volume. Likewise if you increase the temperature of a gas then the particles will move faster and push harder on their container, making it expand and increasing its volume.

Charles' Law only works when the temperature is measured in Kelvin.
When dealing with gasses always use Kelvin.

The Combined Gas Law

Boyle's Law, Amonton's Law and Chales' Law can all be combined into a single relationship that links the pressure, volume and temperature of a fixed mass of gas. It states that the pressure of a gas multiplied by its volume and then divided by its temperature in kelvin is equal to a constant. This formula appears on the formula sheet and is given below:

(K)

The value of the constant never changes for a certain fixed mass of a particular gas. However it is common to deal with situations where one of the variables is fixed. This makes things much simpler!

Boyle's Law Formula

When the temperature of a gas is fixed we can use a simplified version of the combined gas law formula. If we only look at situations where we have an initial and a final state of a gas then things become simpler still and we are left with the following formula:

Pressure after

As long as you use the same units for volume for both V_{1} and V_{2} you can use any unit of volume you wish - saving you the hassle of converting cm^{3} into m^{3} or a similar tricky conversion.

Example

$100 \mathrm{~cm}^{3}$ of air is contained in a syringe at atmospheric pressure $\left(1 \times 10^{5} \mathrm{~Pa}\right)$. If the volume is reduced to $50 \mathrm{~cm}^{3}$, without a change in temperature, what will be the new pressure?

Practice Problems

1. $100 \mathrm{~cm}^{3}$ of air is contained in a syringe at atmospheric pressure $\left(1 \times 10^{5} \mathrm{~Pa}\right)$. If the volume is reduced to $20 \mathrm{~cm}^{3}$, without a change in temperature, what will be the new pressure?
2. If the piston in a syringe containing $300 \mathrm{~cm}^{3}$ of gas at a pressure of $1 \times 10^{5} \mathrm{~Pa}$ is moved outwards so that the pressure of the gas falls to $8 \times 10^{4} \mathrm{~Pa}$, find the new volume of the gas.
3. A weather balloon contains $80 \mathrm{~m}^{3}$ of helium at normal atmospheric pressure of $1 \times 10^{5} \mathrm{~Pa}$. What will be the volume of the balloon at an altitude where the air pressure is $8 \times 10^{4} \mathrm{~Pa}$?
4. A swimmer underwater uses a cylinder of compressed air which holds 15 litres of air at a pressure of 12000 kPa . Calculate the volume this air would occupy at a depth where the pressure is 200 kPa .

Amontons' Law Formula

When the volume of a gas is fixed we can use a simplified version of the combined gas law formula. If we only look at situations where we have an initial and a final state of a gas then things become simpler still and we are left with the following formula:

As long as you use the same units for volume for both V_{1} and V_{2} you can use any unit of volume you wish - saving you the hassle of converting cm^{3} into m^{3} or a similar tricky conversion. However, remember that all of the temperatures must be measured in kelvin.

Practice Problems

1. A cylinder of oxygen at $27^{\circ} \mathrm{C}$ has a pressure of $3 \times 10^{6} \mathrm{~Pa}$. What will be the new pressure if the gas is cooled to $0^{\circ} \mathrm{C}$?
2. An electric light bulb is designed so that the pressure of the inert gas inside it is 100 kPa (normal air pressure) when the temperature of the bulb is $350^{\circ} \mathrm{C}$. At what pressure must the bulb be filled if this is done at $15^{\circ} \mathrm{C}$?
3. The pressure in a car tyre is $2.5 \times 10^{5} \mathrm{~Pa}$ at $27^{\circ} \mathrm{C}$. After a long journey the pressure has risen to $3.0 \times 10^{5} \mathrm{~Pa}$. Assuming the volume has not changed, what is the new temperature of the tyre?

Charles' Law Formula

When the pressure of a gas is fixed we can use a simplified version of the combined gas law formula. If we only look at situations where we have an initial and a final state of a gas then things become simpler still and we are left with the following formula:

Remember that all of the temperatures must be measured in kelvin.

Practice Problems

1. $100 \mathrm{~cm}^{3}$ of a fixed mass of air is at a temperature of $0^{\circ} \mathrm{C}$. At what temperature will the volume be $110 \mathrm{~cm}^{3}$ if its pressure remains constant?
2. Air is trapped in a glass capillary tube by a bead of mercury. The volume of air is found to be $0.1 \mathrm{~cm}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$. Calculate the volume of air at a temperature of $87^{\circ} \mathrm{C}$.
3. The volume of a fixed mass of gas at constant temperature is found to be $50 \mathrm{~cm}^{3}$. The pressure remains constant and the temperature doubles from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. Explain why the new volume of gas is not $100 \mathrm{~cm}^{3}$.
4. A fixed mass of gas is cooled from $100^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. The pressure is kept at atmospheric pressure throughout. If the initial volume is $6 \mathrm{~cm}^{3}$, calculate the final volume.

Combined Law Problems

Example: A balloon contains $1.3 \mathrm{~m}^{3}$ of helium at a pressure of 100 kPa at a temperature of $27^{\circ} \mathrm{C}$. If the pressure is increased to 250 kPa at a temperature of $127^{\circ} \mathrm{C}$, calculate the new volume of the balloon.

Practice Problems

1. A sealed syringe contains $100 \mathrm{~cm}^{3}$ of air at atmospheric pressure $1 \times 10^{5} \mathrm{~Pa}$ and a temperature of $27^{\circ} \mathrm{C}$. When the piston is depressed, the volume of air is reduced to $20 \mathrm{~cm}^{3}$ and this produces a temperature rise of $4^{\circ} \mathrm{C}$. Calculate the new pressure of the gas.
2. $\quad 200 \mathrm{~cm}^{3}$ of carbon dioxide at $27^{\circ} \mathrm{C}$ is heated to $127^{\circ} \mathrm{C}$. If the initial pressure is $6 \times 10^{5} \mathrm{~Pa}$ and the final pressure is $1 \times 10^{6} \mathrm{~Pa}$, what is the volume after heating?
3. Hydrogen in a sealed container was heated from $77^{\circ} \mathrm{C}$ to 400 K . If the gas was allowed to expand during heating from $50 \mathrm{~cm}^{3}$ to $120 \mathrm{~cm}^{3}$ and the pressure after expansion was $2 \times 10^{5} \mathrm{~Pa}$, what was the pressure before the container was heated?
4. The pressure of a fixed mass of nitrogen is increased from $1.3 \times 10^{5} \mathrm{~Pa}$ to $2.5 \times 10^{5} \mathrm{~Pa}$. At the same time, the container is compressed from $125 \mathrm{~cm}^{3}$ to $100 \mathrm{~cm}^{3}$. If the initial temperature of the gas was $30^{\circ} \mathrm{C}$, find the final temperature of the gas.
5. Oxygen at atmospheric pressure $\left(1 \times 10^{5} \mathrm{~Pa}\right)$ is heated from 400 K to 500 K in a sealed container. If the volume increases during heating from $80 \mathrm{~cm}^{3}$ to $100 \mathrm{~cm}^{3}$, find the final pressure of the oxygen.

More Practice Problems

1. A 1 kg sample of air is contained in a gas tight cylinder. The cylinder has a moveable piston. The sample of air is at a temperature of $0^{\circ} \mathrm{C}$ and under a pressure of 101 kPa . The density of air at $0^{\circ} \mathrm{C}$ and a pressure of 100 kPa is $1.28 \mathrm{kgm}^{-3}$.
2. Calculate the volume of air in the cylinder.
3. The air in the cylinder is now heated to a temperature of $70^{\circ} \mathrm{C}$. The pressure of the air is kept constant at 101 kPa . Calculate the new volume of the air in the cylinder.
4. What is the density of the air in the cylinder when the temperature of the air is $70^{\circ} \mathrm{C}$ and pressure of the air is 101 kPa ?

Electricity and Energy

You need to know:

	? ?
That there are two types of charge; positive and negative	
That like charges repel each other	
That unlike charges attract one another	
The simple model of an atom	
That in an electric field a charged object will experience a force	
How to use the Q = It formula	
That electrons are free to move in a conductor	
The difference between conductors and insulators	
Example conductors and insulators	
How to explain current in terms of moving charges	
That voltage is the energy per unit of charge	
What the circuit symbols, functions and applications of the following are: Cell, battery, resistor, variable resistor, fuse, switch, lamp, ammeter, voltmeter, LED, LDR, thermistor, transistor.	
Weather ammeters and voltmeters are connected in series or parallel and how to add them into a circuit diagram	
How to use Ohm's Law (the V = IR formula)	
That the resistance of a resistor can change if its	
temperature changes	
That in a series circuit the current is the same at all points in the circuit	
That all the voltages in a series circuit add up to the supply voltage	

	$\begin{aligned} & v ? \\ & x \end{aligned}$
That the currents in a parallel circuit add up to the supply current	
That the voltage across each 'branch' of a parallel circuit is the same as the supply voltage	
How to calculate the total resistance of series and parallel crcuits (the $R_{T}=R_{1}+R_{2}$ and $1 / R_{T}=1 / R_{1}+1 / R_{2}$ formulae)	
The energy transformations in common electrical components	
That the resistance of a thermistor decreases as temperature increases	
That the resistance of an LDR decreases as the intensity of light increases	
That an LED will only light if connected a certain way round in a circuit	
That transistor can be used as a switch	
How to use the $\mathrm{P}=\mathrm{E} / \mathrm{t}$ formula	
How to use the $\mathrm{P}=\mathrm{IV}$ formula	
How to use the $\mathrm{P}=\mathrm{IR}^{2}$ formula	
How to use the $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$ formula	
That energy is conserved	
How to use the $\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2}$ formula	
How to use the $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$ formula	
That temperature is a measure of the mean kinetic energy of the particles in a substance	
The difference between temperature and heat	
That different materials require different amounts of heat energy to raise the temperature of the same amount of mass	
How to use the $\mathrm{E}_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{T}$ formula	

	$?$ \boldsymbol{x}
That pressure is the force per unit area	
How the kinetic model of a gas explains the pressure of a gas	
How the kinetic model of a gas explains the relationship between pressure, temperature and volume	
How to convert temperatures between celsius and kelvin	
How to use the PV/T = constant formula	

