Samp	ple Ansv	ver and		Notes	Marks	
22.	(a)	diag accu	ed scale ram racy 11 N)	(½) (½) (1)		
		OR				
		d=	$\sqrt{800^2 + 800^2}$	(1)		
		=	1131 N	(1)		2
	(b)	(i)	W = mg = 180 × 10 = 1800 N	(½) (½) (1)		2
		(ii)	resultant = 2700 - 1800 = 900 N $a = \frac{F}{m}$ = $\frac{900}{180}$ = 5 m/s ²	(1) (½) (½) (1)		3
						Total 7

(a)	Calculate the magnitude of the acceleration of the plane assuming there are no other forces acting on the plane at this point.		
	F = ma	(2)	
	$4500 = 750 \times a$	(2)	
	$a = 6 \text{ m/s}^2$		2
(b)	The required speed for take-off is 54 m/s.		
	Calculate the time it takes to reach this speed assuming the acceleration is constant.		
	$a = \frac{v - u}{t} $	Must be consistent with (a)	
	$6 = \frac{54 - 0}{t}$	(5)	
	$t = 54 \div 6$ $t = 9 \text{ s}$	Don't accept secs	2
(c)	In practice the acceleration is not constant. Give a reason for this. Other forces will act on the plane (e.g. dra Mass decrease (fuel consumption)	0	1

Sam	ple An	swer and Mark Allocation		Notes	Marks
23.	(a)	width/length of card (d) (½) time taken for card to cut beam (t) (½)		must <u>define 'd' and 't'</u> to get 2nd mark	
		$v = \frac{d}{t}$ or $\overline{v} = \frac{d}{t}$	(1)		
		or with correct measurements		4	
	y =length of card		$v = \frac{d}{t}$ on its own = 0 marks		
		time taken card to cut beam (this equation on its own = 2)			2
	(b)		(½) (½)	this line on its own = 1 mark must have 2nd line	1
		(ii) $v = \frac{p}{m}$			
		$=\frac{0.105}{5\times10^{-4}}$	(½) (½)	if they use 0·105175 from mom calculation they get 210·35 = (-½) for sig figs $210\cdot4=\checkmark$	1

Sample Answer and Mark Allocation		Notes	Marks
(c) (i) $a = \frac{(v-u)}{t}$ $10 = \frac{(v-0)}{0.2}$	(½)		
v = 2 m/s	(1)	Δ v = 2 m/s \checkmark v = 1.96 if using 9.8 or 1.962 if using 9.81	2
(ii) $d = \overline{v}t$ = 1×0.2	(½) (½) (1)	if they use a graph: area under graph/or ½bh = (½)	
= 0·2 m	(1)	$\frac{1}{2}(0.2 \times 2) = 0.2 \text{ m}$ (1/2) (1)	2
			Total 8

Sam	ple An	swer and Mark Allocation	Notes	Marks	
23.	.,		(½) *If g = 9.8 accept 490,000 or 500,000 If g = 9.81 accept 491,000 or 500,000 (½)		
			(1)		2
	(b)	500,000 N*	(1)	*Must be consistent with (a) *Don't penalise repeated sig.fig.error	1
	(c)	For scale drawing accept (5.4 ± 0.3) (36 ± 3°) F (54 ± 3°) 4.4 x 10 ⁴ N		*Accept 5 × 10 ⁴ , 5.4 × 10 ⁴ , 5.44 × 10 ⁴ , 5.441 × 10 ⁴ If added 'tail-to-tail' max 1%	
		$F^2 = {}^2 + {}^2$	(½)		
		$F = 5.4 \times 10^4 \text{N}^*$	(1)		
		$\tan x = \frac{4 \cdot 4 \times 10^4}{3 \cdot 2 \times 10^4}$	(½)		
		$x = 54^{\circ}\dagger$	(½)	† Accept 50°, 54°, 54·0°, 53·97°	
		$F = 5.4 \times 10^4 \text{ N at } 036^{(0)}$	(½)	* must be consistent with x	3

Page 7

					1	
2012	2012 Physics Intermediate 2					
Sam	ple An	swer a	and Mark Allocation			Marks
21.	(a)	(i)	d = vt	(½)		
			8,300×100×60	(1/2)	Mins not converted to s, deduct $\frac{1}{2}$	
			= 49,800,000m	(1)		2
		(ii)	(As orbit is circular) <u>direction changes</u> / or unbalanced force exists	(1)		2
			so velocity changes .	(1)		_
	(b)	d =	νf	(1/2)	Anything other than 300 000 000 – stop marking (½ for formula) Wrong conversion of 800 km – deduct ½	
			×1000 = 300,000,000 t	(1/2)	0.003 and 0.00267 OK	
		t = 0	0.0027 s	(1)		2
	(c)	(i)	The weight of 1 kg OR Weight per unit mass OR Earth's pull per kg.	(1)	Weight/mass = 0; force per unit mass = 0; Newtons per kg = 0; Gravity per kg = 0; same as $10\text{m/s}^2 = 0$	1
		(ii)	7.8 N/kg	(1)	No tolerance – exact value required. Minus ½ for missing/wrong unit.	1
		(iii)	W = mg	(1/2)	Must use the same value as stated in part (ii) OR correct value.	
			= 84×7.8	(1/2)		
			= 660N	(1)	s.f. accept 655.2; 655; 700	2

Page 4

2008 Physics	Intermediate 2			
Sample Ansv	wer and Mark Allocation	Notes	Marks	
21. (a)	$a = \frac{v - u}{t}$	(½)		
	$a = \frac{9}{2}$	(1/2)		
	$a = 4.5 \text{ m/s}^2$	(1)		2
(b)	F = m × a F = 15 × 4.5 F = 67.5 N	(½) (½) (1)		2
(c)	d = area under graph d = (0.5 × 9 × 2) + (10 × 9) + (0.5 × 9 × 1) d = 9 + 90 + 4.5 d = 103.5 m	(½) (½) (1)		2
(d)	$P = \frac{1}{f}$	(½)		
	$P = \frac{1}{0 \cdot 2}$ $P = 5 D$	(½) (1)		
		(-)		2
				Total 8

2010	Physi	ics Int	termediate 2		
Sam	ple Ar	ıswer	and Mark Allocation	Notes	
21.	(a)	a	$=\frac{v-u}{t}$	(½)	
			$= \frac{\mathbf{v} - \mathbf{u}}{\mathbf{t}}$ $= \frac{6 - 0}{60}$ $= 0.1 \mathrm{m/s^2}$	(½) (1)	
	(b)		= area under graph = (0.5 × 60 × 6) + (40 × 6) = 420 m	(½) (½) (1)	
	(c)	v	· ·	(½)	
			$= \frac{420}{100} $ = 4.2 m/s	(½) (1)	
	(d)	w	= mg = 400 × 10 = 4000 N	(½) (½) (1)	accept 9-8 and 9-81 for 'g' which give 3920 N and
	(e)	F	= ma = 400 × 0·1 = 40 (N)	(½) (½) (½)	must be consistent with (a) and (d)
		Upv	ward force = 4000 + 40 = 4040 N	(½) (1)	

Page 4

2012	22.	(a)	Car continues at a <u>constant speed</u> during this time. AB represents driver's reaction time OR the forces are balanced (or equivalent).	(1) (1)	Must describe constant speed to get second
		(b)	$E = \frac{1}{2} m v^2$	(1/2)	
			$=0.5\times700\times30^{2}$	(1/2)	If 30 without squaring symbol is used – stop
			= 315,000J	(1)	320 000 J OK
		(c)	315,000J	(1)	Answer must be consistent with (b)
		(d)	$a = \frac{v - u}{t}$	(1/2)	
			=(0-30)/2.5	(1/2)	=(30-0)/2.5 If used = minus (½)
			(-)12 (m/s ²)	OR (½)	
			F = ma	(1/2)	
			= 700×12	(1/2)	
			= 8400N		If F = 8400 N not stated minus ½
			d=area under graph	(1/2)	a.u.g. or implied
			$=0.5\times2.5\times30$	(½) OR	
			= 37.5 (m)	(1/2)	
			$E_W = Fd$	(1/2)	
			$315,000 = F \times 37.5$	(1/2)	If F = 8400 N not stated minus ½
			F = 8400N		

Sample Answer and Mark Allocation Notes 22. (a) (i) Acceleration is the change of velocity (not speed) (1) Need to be indication of time requirement. No (½)	
(ii) Direction of satellite is (continually) changing (1)	
OR <u>Velocity</u> of satellite is (continually) changing (1) OR	
There is an <u>unbalanced</u> (<u>not 'resultant'</u>) force on (1) the satellite	
(b) $F = 12 - 2 = 10 \text{ N}$ (1) No attempt to calculate $F \frac{4}{3}$ for formula	
F = ma (½)	
$\therefore 10 = 50a \tag{\%2}$	
$a = 0.2 \text{ m/s}^2 \tag{\%}$	
Direction is right (½)	

Sam	ıple Aı	nswer and Mark Allocation	Notes	
22.	(a)	$a = \frac{(v-u)}{t} \text{OR} a = \frac{\Delta v}{t}$ $a = \frac{(3-0)}{5}$ $a = 0.6 \text{ m/s}^2$	(½) (½) (1)	m/s ⁻² mp/s ² m/s/s } (-½)
	(b)	F = ma F = 40 × 0·6 = 24 N	(½) (½) (1)	
	(c)	There is an unbalanced force/friction, this acts against the motion. (must have some mention of opposing the motion) Ignore mention of component of weight	(1) (1)	

					-
21.	(a)	$s = vt$ $t = \frac{11}{20}$		(½) (½)	Accept $D = ST$ on its own for $\frac{1}{2}$ mark
		= 0.55 s Accept	0-6 s	(1)	
	(b)	$=\frac{v-u}{t}$		(½)	$g = 9.8 \rightarrow 5, 5.4, 5.39$ $g = 9.81 \rightarrow 5, 5.4, 5.40, 5.396$
		$v = 10 \times 0.55$		(½)	
		= 5.5 m/s Accept	6 m/s	(1)	
	(c)	(½) 5.5 v (½) (m/s)	(½) for each (-½) if no or (-½) for inappropriate 0.55(½) t(\$) (½)	igin	Figures on axis must be consistent with parts (a) an s vs $t \rightarrow \text{No marks}$
	(d)	$s = \text{area under graph ($\frac{1}{2}$)}$ OR $s = \frac{1}{2} \times 0.55 \times 5.5 ($\frac{1}{2}$)$		(½) (½)	*Accept 2, 1.5, 1.51, 1.513 *Must be $s = \overline{v}t$. No other symbols
		$s = 1.5 \text{ m} (1)^*$	$s = 1.5 \text{ m} (1)^*$	(1)	

(a)	(i)	A contestant has a mass of 60 kg. He runs off the platform with a horizontal velocity of 2 m/s. He takes 0.75 s to reach the water surface in the centre of the ring. Calculate the horizontal distance X from the poolside to the centre of the ring.			
		$d = vt (%) d = 2 \times 0.75 (%) d = 1.5 m (1)$		2	
	(ii)	Calculate the vertical velocity of the contestant as he reaches the water surface. $a = \frac{v - u}{t}$ (%)			
		$10 = \frac{\mathbf{v} \cdot 0}{0 \cdot 75} \tag{%}$ $\mathbf{v} = 7.5 \text{ m/s} \tag{1}$	If 9.8 used 7.35, 7.4 If 9.81 used 7.358, 7.36, 7.4	2	

Γ	Qu	estion	Sample Answers and Mark Allocation	n	Notes	Inner	Oute
L						Margin	Mar
		(b)	Another contestant has a mass of 80 kg. Will she need to run faster, slower or at the same horizontal speed as the first contestant land in the ring? You must explain your answer.				
			Same All objects fall with the same (vertical) acceleration.	(1) (1)	Must have explanation to get first mark Will take the same time to reach the water	2	6

ΝΔΤΙΟΝΔΙ	5 Physics	Key Areas M	ritten Question:	ς ΔNSWFRS
INALIGINAL		INC V MI Cas VV	HILLEH QUESLIOH	3 4113 44 5113

Space Exploration.

Cosmology

Samp	Sample Answer and Mark Allocation				Notes	Marks
23.	(a)	(i)	$E_w = F \times d$ $E_w = 300 \times 1.5$ $E_w = 450 \text{ J}$	(½) (½) (1)		2
		(ii)	$E = 450 \times 500 = 225000 \text{ J}$ $P = \frac{E}{t}$ $P = \frac{225000}{5 \times 60}$ $P = 750 \text{ W}$	(1) (½) (½) (1)		3
	(b)	(i)	E = c m Δ T 450 × 500 = 902 × 12 × Δ T Δ T = 20.787 = 21°C	(½) (½) (1)		2
		(ii)	energy is lost to the surrounding air	(1)		1
						Total 8

Samp	ple Aust	wer and	Mark Allocation		Notes	Marks
24.	(a)	E _p = : E _p = : E _p = :	mgh 750 × 10 × 7-2 54000 J	(½) (½) (1)		2
	(b)	(i)	54000 J	(1)		1
		(ii)	$E_K = \frac{1}{2} m v^2$ $54000 = 0.5 \times 750 \times v^2$ v = 12 m/s	(½) (½) (1)		2
						Total 5

Sampl	e Ans	wer a	and Mark Allocation		Notes
23.	(a)	(i)	$E_P = mgh$	(1/2)	
			= 0.50×10×19.3	(1/2)	Accept g = 9.8; 9.81; s.f. accept 2 more or 1 less
			= 96.5 J	(1)	97 J OK
		(ii)	$E_H = cm\Delta T$	(1/2)	
			$96.5 = 386 \times 0.50 \times \Delta T$	(1/2)	E _H must be consistent with (i). If any other value of (½) for formula.
			$\Delta T = 0.5$ ° C	(1)	
		(iii)	Less than. Some heat is lost to surroundings/ or equivalent.	(1) (1)	If 'less than' is on its own = 0 marks. 'Less than' plus wrong explanation = 1 mark. 'Hear qualified. Qualified sound loss OK eg on hitting the ground
	(b)	E_h	= ml	(1/2)	
			.50×(2.05×10 ⁵) (½) (1)		If wrong value from same table for latent heat of fu 1. Any other value used = (½) for formula.
		=1	02,500J	(1)	100 000 J, 103 000 J OK

If 9.8 used: $E_p = 10584000$ (accept) 21. (a) $E_p = mgh$ (1/2) $= 2000 \times 10 \times 540$ (1/2) $= 1.06 \times 10^7 \text{ J}$ 2009 = $10800000 \text{ J} (1.08 \times 10^7 \text{ J})$ (1) $= E_{ptop} - E_{phonom}$ = 2000 × 10 × 540 – 2000 × 10 × 0 $= 10800000 - 20000 (-\frac{1}{2} \text{ for arith})$ = 10780000 J $[1 \times 10^7, 1.1 \times 10^7 \text{ V}]$ $E_k = \frac{1}{2}mv^2$ $v = \sqrt{2gh} = 0$ (b) (½) $64000 = 0.5 \times 2000 \times v^2$ (1/2) v = 8 m/s(1) mps is incorrect unit = *IV* (c) (i) (½) (-1/2) for incorrect power conversion (½) (1) $45600 = I \times 380$ = 120 A (Amps) (Amperes) E = Pt(1/2) (-1/2) for incorrect time conversion and/or (-1/2) for incorrect $= 45600 \times 60 \times 60$ (½) $= 1.64 \times 10^8 \text{ J}$ (1) (sig fig range 1.6×10^8 , 1.64×10^8 , 1.642×10^8 , 1.6416×10^8) $E_w = Fd$ $E_w = 250 \times 4.5$ $E_w = 1125 \text{ J}$
$$\begin{split} E_p &= mgh \\ E_p &= 144 \times 10 \times 0.75 \\ E_p &= 1080 \text{ J} \end{split}$$
(%) Must be consistent with (a) and (b)

((a)	State what is meant by the term voltage.	Don't accept energy per electron Do accept: energy given to electrons
		(The voltage of a supply is a measure of) the energy given to the charges in a circuit. (1)	energy per coulomb energy per charge

(b) (i) Calculate the input current.
$$I = P/V \qquad (\frac{1}{2})$$

$$= 1196/230 \qquad (\frac{1}{2})$$

$$= 5 \cdot 2 \text{ A} \qquad (1) \text{ Accept Amps}$$

Samp	ole Ansv	ver and l	Mark Allocation		Notes	Marks
25.	(a)	$P = I^2$ $2 = I^2$ $I^2 = 0$	R × 50	(½) (½)		
		I = 0.2	04 2 A	(1)		2
	(b)	(i)	$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	(½)		
			$\frac{1}{R_t} = \frac{1}{60} + \frac{1}{30}$	(1/2)		
			$R_t = 20 \Omega$	(1)		2
		(ii)	$P = \frac{V^2}{R}$	(½)	½ for equation once only.	
			$P = \frac{9^2}{60} = 1.35 \text{ W}$	(½) (1)	½ for both substitutions.	
			$P = \frac{V^2}{R}$	(½)		
			$P = \frac{9^2}{30}$	(1/2)		
			= 2·7 W	(1)		3
		(iii)	30 ohm resistor will overheat	(1)		1
	(c)	none		(1)		1
						Total 9

	Lamp A	(1)			
	It has the lowest resistance/highest current/greatest power	(1)	one of three	2	
	$P = V^{2}/R$ = 24 ² /2·5 = 230 W	(½) (½) (1)	V = I R and P = I V (½) (I = 9.6 A) 230·4 W	2	
				1	
(i)	State the voltage across the motor.				
	12 V		1 or 0 unit required	1	
	$1/R_p = 1/R_1 + 1/R_2$ = 1/8 + 1/24 = 4/24	(½) (½)	-½ if rounding within calculation		
	$R_p = 24/4$ $= 6 \Omega$	(1)		2	

The motor speed will reduce (1)		
The (combined) resistance (of the circuit)			
is now higher/current is lower.			
Voltage across motor is less			
Motor has less power (1	any one of four	2	10
I .	l .	I	l

(a	(i)	Name component X.		
		X = (NPN) transistor	0 marks for MOSFET or PNP transistor	1
	(ii)	What is the purpose of component X in the circuit? To act as a switch	To turn on the buzzer 0 marks To operate the buzzer 0 marks	1
(1))	The darkroom door is opened and the light level increases. Explain how the circuit operates to sound the buzzer. Resistance of <u>LDR</u> reduces (½) so voltage across <u>LDR</u> reduces (½) Voltage across <u>variable resistor/R</u> increases (1) When voltage across <u>variable resistor/R</u> reaches (0·7 V) transistor switches buzzer on. (1)	Accept 'when voltage is high enough'	3

80 units: resistance of LDR = 2500 (Ω)	(3/2)		
Total resistance = $2500 + 570$ = $3070 (\Omega)$	(½)		
I = V/R = 5/3070	(½) (½)	1·6 mA 1·63 mA	
= 1.63 × 10 ⁻³ A or 1.63 mA	(1)	1·629 mA	

25. ((a) (i)	I	= 0.075 A	(1)	
		4.2	$= IR$ $= 0.075 \times R$ $= 56 \Omega$	(½) (½) (1)	
	(ii)	stays ti		(1)	incorrect conclusion = 0 marks
		or as ti increas	$\frac{3 \cdot 6}{0 \cdot 064} = 56 \cdot 25$ the voltage increases the current sets by the same ratio hause it's a straight line through the same ration.	(1)	must have an attempt at justification 1 correct calculation enough for 1 mark (Not enough to say voltage increases at the current increases)
(b) (i)	R _r	= $R_1 + R_2$ = $270 + 390$ = 660Ω	(½) (½) (1)	must have calculation for both (i) and (ii) no calculations = 0
	(ii)	$\frac{1}{R_i}$	$=$ $\frac{1}{R_1} + \frac{1}{R_2}$	(½)	
			$=$ $\frac{1}{33} + \frac{1}{56}$	(½)	
			$= \frac{1}{33} + \frac{1}{56}$ $= 0.048$ $= 20.76 \Omega$	(½) (1)	

(c) Voltage across 8Ω resistor would decrease

resistance

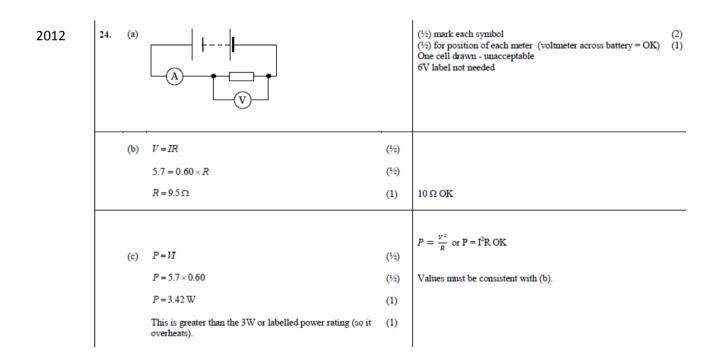
less current in the circuit

= 0.4 V

(1/2) max, if divide final answer by 2

The 8Ω resistor now has a smaller proportion of the total

2010


4. (a) $R_T = R_1 + R_2 = 8 + 24 = 32 \Omega$		(1)			
	V I	=	IR 6 32	(½) (½)	
	I	=	0-19 A	(1)	
(b)	V_2	=	$\left(\frac{R_2}{R_1 + R_2}\right) V_S$	(½)	
	V_2	=	$\left(\frac{8}{8+24}\right)$ 6	(½)	
	V_2	=	1-5 V	(1)	
	OR				
	V	= = =	IR 0-19 × 8 1-5 V	(½) (½) (1)	

(1)

(1)

2011	25.	(a)	$\frac{1}{R_{\mathrm{T}}} = \frac{1}{R_{\mathrm{I}}} + \frac{1}{R_{\mathrm{2}}}$	(1/2)	
			$= \frac{1}{4} + \frac{1}{2}$	(½)	
			$\therefore R_{\rm T} = 1.3 \Omega$	(1)	
			Accept 1 Ω , 1-33 Ω , 1-333 Ω		
		(b)	$R_{\rm T} = R_1 + R_2$	(½)	
			= 1.3+6	(½)	
			= 7.3Ω Consistent with (a)	(1)	
			Accept 7-3 Ω , 7-33 Ω , 7-333 Ω		
		(c)	(Voltage across 2 Ω resistor = Voltage across 4 Ω resistor)		
			V = IR	(½)	
			$= 0.1 \times 4 \text{ (or } 0.2 \times 2)$	(½)	
	I				

27.	(a)	To reduce <u>current</u> in LED OR To reduce <u>voltage</u> across LED OR To reduce <u>power</u> to LED	(1)	
	(b)	V = 6 - 2 = 4 V	(1)	
		V = IR	(1/2)	
		$\therefore R = \frac{4}{0.1}$	(1/2)	
		= 40 Ω	(1)	
	(c)	$P = I^2R$ $P =$	V ² / _R (½)	
		$= (0.1)^2 \times 40^* =$	16/40 * (½)	
		= 0.4 W =	0-4 W (1)	
		*Must be consistent with (b) $P = $	IV	
		=	0-1 × 4 = 0-4 W	

28	(a)	(i) (ii)	P *Must be	= = = =	IV $0.4 \times 10^{-3} \times 0.5$ 2×10^{-4} W $\frac{4 \times 10^{-3}}{2 \times 10^{-4}}$ 20 (cells) * sistent with (a) (i)	(½) (½) (1) (1) (1)	*Must be whole number rounded up -½ if not
	 (b) Light → electric (al) Not 'electricity' -or "to", but something needed (not just two words) 					(1)	No (½) marks

2009	24. (a) $E_h = cm\Delta T$ = 4180 × 0·1 ×15 = 6270 J	(½) (½) (1)	If 4180 not used then (½) max for formula ignore negative energy
	(b) $E_h = ml$ = $0.1 \times 3.34 \times 10^5$ = $3.34 \times 10^4 \text{ J}$	(½) (½) (1)	If 3-34 \times 10^5 not used then (½) max for formula
	(c) (i) 33400 + 6270 = 39670 J	(1)	must be consistent with (a) and (b)
	E = Pt $39670 = 125 \times t$ $t = 317 \cdot (36) s$	(½) (½) (1)	must have added (a) and (b). If not max $(\frac{1}{2})$ for formula (no secs)
	(ii) Heat energy will be gained from surroundings/other food etc More energy must be removed	(1) (1)	

2010	23.	(a)	E _h = c =	2.59×10 ⁷ 60×[(307-(-173)]	(½) (½) (1)	
		(b)	P =	<u>E</u>	(½)	
			t =	2 · 59 × 10 ⁷	(1/2)	
			=	1440 18000 s	(1)	
		(c)	288000	1	(1)	
				00 (rocks)	(1)	
		(d)	It would	l be easier	(1)	
				tional field strength at the surface of Mercury is n that at the surface of Earth		
			Weight on Eart	of rocks on Mercury is smaller than their weight		
			OR Gravity	is less on Mercury	(1)	

24.	(a)	(i)	(33-21) =	= 12 °C	(1)	*Must be consistent with parts (i) + (ii)
		(ii)	(120,000	-12,000) = 108,000 J	(1)	
		(iii)	E _h	$= cm\Delta T$	(½)	
			108,000	$= c \times 2.0 \times 12$	(½)	
			с	= 4,500 J/kg °C* (not J/kg/°C)	(1)	
	(b)	(i)	Measured	i value of $E_{ m h}$ too large OR ΔT too small	(1)	
				to <u>surroundings</u> (or similar) * r not evenly heated (or similar) †	(1)	*to air, from water, from equipment etc † or immersion heater not fully immersed Explanation must be offered
		(ii)	OR Stir v	id on beaker	(1)	Empiritation inter-
	(c)	Ε	= Pt		(½)	*If no conversions answer is 21,600. Also accept 22,000
		108,00	$00^{\dagger} = P \times$	5 × 60	(½)	† must be consistent with (a) (ii) or wrong physics
		P	= 360	W*	(1)	

(a)	State what is meant by the term voltage. (The voltage of a supply is a measure of) the energy given to the charges in a circuit. (1)	Don't accept energy per electron Do accept: energy given to electrons energy per coulomb energy per charge
(b) (i)	Calculate the input current. $I = P/V$ (%) = 1196/230 (%) = 5·2 A (1)	Accept Amps
(ii)	The microwave is used to heat a cup of milk for 1 minute 30 seconds. Calculate how much electrical charge passes through the flex in this time. $Q = It$ $= 5 \cdot 2 \times (60 + 30)$ $= 468 \text{ C}$ (½))
(iii	The milk of mass 0.25 kg absorbs 48 kJ of energy during the heating process. The specific heat capacity of milk is 3900 J/kg °C. Calculate the temperature rise in the milk.	
	$E = mc\Delta T $ $48000 = 0.25 \times 3900 \times \Delta T $ $\Delta T = 49.2^{\circ} C $ (½))