Dynamics and Space ï Exam Style Questions

1. Which one of the following is a scalar quantity?

A	speed
B	acceleration
C	force
D	weight
E	velocity

2. A boy is training for a race on the school playing fields:

3. Two huskies pull a sleigh, with an equal force of 250 N , at right angles to each other.

4. A golf ball is rolling with a horizontal velocity of $5 \mathrm{~m} / \mathrm{s}$. It drops down 0.5 m into a sand trap. This takes 0.31 s .

The vertical velocity of the ball as it hits the

A $0.5 \mathrm{~m} / \mathrm{s}$
B $\quad 1.0 \mathrm{~m} / \mathrm{s}$
C $\quad 1.4 \mathrm{~m} / \mathrm{s}$
D $\quad 2.8 \mathrm{~m} / \mathrm{s}$
E $\quad 3.0 \mathrm{~m} / \mathrm{s}$
5. If an object accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$ it:

A has a steady speed of $5 \mathrm{~m} / \mathrm{s}$
B decreases its speed by $5 \mathrm{~m} / \mathrm{s}$ every second
C decreases its speed to $5 \mathrm{~m} / \mathrm{s}$
D increases its speed to $5 \mathrm{~m} / \mathrm{s}$
E increases its speed by $5 \mathrm{~m} / \mathrm{s}$ every second
6. The weight of a man with a mass of 60 kg on a planet with a gravitational pull of $5 \mathrm{~N} / \mathrm{kg}$ is:

A $\quad 5 \mathrm{~kg}$
B $\quad 5 \mathrm{~N}$
C $\quad 60 \mathrm{~kg}$
D 300 kg
E 300N
7. Two boys push a crate in the same direction. They each exert a force of 100 N on it. A frictional force of 50 N also acts on the crate.

The magnitude of the resultant force on the crate is:

A $\quad 50 \mathrm{~N}$
B $\quad 100 \mathrm{~N}$
C 150 N
D 200N
E 250N
8. Two men push a car of mass 1000 kg along a narrow road.

One of them pushes the car with a force of 65 N .
If the car accelerates at $0 \cdot 1 \mathrm{~m} / \mathrm{s}^{2}$ and friction is ignored, the second man is exerting a force of:

A 65 N
B $\quad 35 \mathrm{~N}$
C $\quad 25 \mathrm{~N}$
D 15 N
E 5 N
9. The unit of work done is:

A N / s
B $\mathrm{J} / \mathrm{s}^{2}$
C Ns
D W/s ${ }^{2}$
E J
10. Which of the following happens when boiling water changes to steam?

I There is no temperature change.

II The water molecules move further apart.

III The water molecules move faster.

A I only
B II only
C III only
D I, II and III
E II and III only
11. The time taken, in hours, for a car to travel 108 km at $30 \mathrm{~m} / \mathrm{s}$ is:

A	$2.8 \times 10^{-4} \mathrm{~h}$
B	0.28 h
C	1 h
D	3.6 h
E	3600 h

12. The forces acting on a toy helicopter are shown below. If the weight has already been taken into account, the resultant force on the helicopter is:

A $\quad 1 \mathrm{~N}$ to the right
B $\quad 1 \mathrm{~N}$ upwards
C $\quad 7.8 \mathrm{~N}$ at 50° to the right of vertical

D $\quad 7.8 \mathrm{~N}$ at 40° to the right of vertical

E $\quad 7.8 \mathrm{~N}$ at 50° to the left of vertical
13. A boat sails North at $3 \mathrm{~ms}^{-1}$. A wind blows from the West to the East at $4 \mathrm{~ms}^{-1}$. Which of the following vectors represents the resultant direction of the boat?

A
\qquad

B

C

D \qquad

E

14. A car has a velocity of $10 \mathrm{~ms}^{-1}$. It then accelerates for 10 s at $2 \mathrm{~ms}^{-2}$. The speed of the car at the end of the 10 seconds is:

A $\quad 10 \mathrm{~ms}^{-1}$
B $\quad 20 \mathrm{~ms}^{-1}$
C $\quad 30 \mathrm{~ms}^{-1}$
D $\quad 40 \mathrm{~ms}^{-1}$
E $\quad 50 \mathrm{~ms}^{-1}$
15. A crate of weight 2000 N is pushed along with a horizontal force of 250 N . It travels at a constant speed.

What is the force of friction between the floor and the crate?

```
A 8N
B 250N
C 1000N
D 1750N
E 2000N
```

16. A man cycles 50 metres to the top of a hill with a 30° incline. The combined mass of the man and the bike is 80 kg .

Assuming that the friction is negligible, the work done by the man to reach the top of the hill is:

A 2000 J
B $\quad 3460$ J
C $\quad 4000 \mathrm{~J}$
D 19600 J
E 33900 J
17. Which of the following shows one vector and two scalar quantities?

A force, velocity, weight
B mass, force, velocity
C weight, mass, speed
D speed, velocity, force
E mass, velocity, momentum
18. A geostationary satellite makes one complete orbit of the earth every

A hour
B day
C week
D month
E year.
19. Which of the following are both vectors?

A momentum and velocity
B momentum and mass
C momentum and speed
D speed and velocity
E mass and velocity
20. Two objects, A and B, are dropped from the same height.
A has twice the mass of B.
Which of the following statements is/are correct?

I At the top, A has twice the potential energy of B.
II At the bottom, A has twice the kinetic energy of B.
III At the bottom, A has twice the speed of B.

A I only
B II only
C III only
D I and II only
E I, II and III
21. The line spectra produced by three elements X, Y and Z and that produced by a star are shown below.

The element(s) present in the star is/are:

A X only
B Z only
C X and Y only
D Y and Z only
E X, Y and Z.
22. A man walks 6 km due East. He then turns around and walks 2 km due West. The total journey takes 2 hours.

Which row in the following table gives the correct values for his average velocity and average speed?

23. The total mass of a motorcycle and rider is 250 kg . During braking, they are brought to rest from a speed of 16.0 msi 1 in a time of 10.0 s .

The maximum energy which could be converted to heat in the brakes is

A 2000 J
B $\quad 4000 \mathrm{~J}$
C $\quad 32000 \mathrm{~J}$
D $\quad 40000 \mathrm{~J}$
E 64000 J
24. The diagram shows two vectors.

Which of the diagrams below show the resultant vector?

A

B

C

D

E

25. A woman walks from X to Y and then from Y to Z as shown below.

Her journey takes 1 hour and 15 minutes.
Which row in the table shows her displacement and average velocity?

	Displacement	Average velocity
A		
	5 km	$1 \overline{\mathrm{~A}} 1 \mathrm{~ms}^{-1}(037)$
B	5 km	$1 \overline{\mathrm{~A}} 1 \mathrm{~ms}^{-1}(053)$
C	5 km	$66 \overline{\mathrm{~A}} 7 \mathrm{~ms}^{-1}(037)$
D	7 km	$66 \overline{\mathrm{~A}} 7 \mathrm{~ms}^{-1}(053)$
E	7 km	$1 \overline{\mathrm{~A}} 1 \mathrm{~ms}^{-1}(037)$

26. The change in velocity per unit time of an object is

A acceleration
B displacement
C impulse
D speed
E velocity
27. A rocket of mass 300 kg accelerates vertically upwards at $4 \mathrm{~ms}^{-2}$ from the moon.

The gravitational field strength on the moon is $1 \bar{A} \mathrm{Nkg}^{-1}$.

The force supplied by the rocket $\hat{\propto}$ engines is
A $\quad 480 \mathrm{~N}$
B $\quad 720 \mathrm{~N}$
C $\quad 1200 \mathrm{~N}$
D $\quad 1680 \mathrm{~N}$
E $\quad 4140 \mathrm{~N}$
28. Which row in the table shows both quantities classified correctly?

	Vector	Scalar
	Force	Kinetic Energy
B	Power	Speed
	Momentum	Velocity
	Work	Potential Energy
	Displacement	Acceleration

