1.

(a)
(i)

$$
\begin{aligned}
\text { current } & =\frac{\text { power }}{\text { voltage }} \\
& =\frac{650}{230} \\
& =2.83 \text { amperes }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { charge } & =\text { current } \times \text { time } \\
& =2 \cdot 83 \times 24 \times 60 \times 60 \\
& =244512 \mathrm{C}
\end{aligned}
$$

(b) Total resistance of the 2 lights in series $=1200 \mathrm{q}$

$$
\begin{aligned}
\mathrm{I} & =\frac{\text { voltage across } 2 \text { lights }}{\text { total } \mathrm{R}} \\
\mathrm{I} & =\frac{12}{1200} \\
& =0.01 \text { Amperes }
\end{aligned}
$$

Total current in circuit $=2 \times 0.01=0.02 \mathrm{~A}$
2. (a) (i) X is a capacitor.
(ii) Increase the capacitance or resistance to decrease the rate at which the capacitor charges up
3.
(a)

$$
\begin{aligned}
\mathrm{E}_{\mathrm{KE}} & =\frac{1}{2} \mathrm{mv}^{2} \\
\mathrm{E}_{\mathrm{KE}} & =\frac{1}{2} \times 0 \cdot 05 \times 6^{2} \\
& =0.9 \text { Joules }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{KE}}=\mathrm{E}_{\mathrm{PE}} \\
& 0 \cdot 9=\mathrm{mgh} \\
& \mathrm{~h}=\frac{0 \cdot 9}{0 \cdot 05 \times 10} \\
& \mathrm{~h}=1 \cdot 8 \mathrm{~m}
\end{aligned}
$$

(c) Some of the kinetic energy changes to sound energy so the ball leaves the ground with less energy than it hit it thus reducing the height of the bounce.
4. C
5. C
6. (a) (i)

$$
\begin{aligned}
& \frac{\mathrm{p}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2}}{\mathrm{~T}_{2}} \\
& \mathrm{p}_{2}=\frac{0.995 \times 10^{5} \times 1123}{1173} \\
& \mathrm{p}_{2}=0.953 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

(ii) As the temperature of the gas molecules decreases so does their kinetic energy They hit the walls less often with less force so the pressure decreases.
(b)

$$
\begin{aligned}
& p_{1} V_{1}=p_{2} V_{2} \\
& 0 \cdot 995 \times 10^{5} \times 0 \cdot 12=0 \cdot 900 \times 10^{5} \times V_{2} \\
& V_{2}=0 \cdot 133 \mathrm{~m}^{3}(3 \text { sig.fig. })
\end{aligned}
$$

7. E
8. A
9. C
10. E
11. B
12. (a)

$$
\begin{aligned}
& \mathrm{W}=\mathrm{mg} \\
& \mathrm{~m}=\text { mass of bucket }+ \text { mass of digger } \\
& \mathrm{W}=(500+750) \times 9.8 \\
& \mathrm{~W}=12250 \mathrm{~N}
\end{aligned}
$$

Potential Energy $=\mathrm{mgh}$
(b)
$\mathrm{E}_{\mathrm{PE}}=1250 \times 9.8 \times 3$
$\mathrm{E}_{\mathrm{PE}}=36750 \mathrm{~J}$
(c) In reality energy would have been lost to the surroundings as heat and/or the hydraulic arms attached to the bucket adds to the weight raised and so would increase the final potential energy.
13. (a) (i) Aluminium has the highest specific heat capacity because it uses the most energy to raise the temperature of 1 kg of the metal by $1^{\circ} \mathrm{C}$.
(ii) Specific heat capacity of soft iron is $\frac{8000 \mathrm{~J}}{12}=666 \cdot 7 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ (any two suitable points from the graph may be used to calculate
the specific heat capacity)
Energy dissipated in the cast iron $=\mathrm{cm} \Delta \mathrm{T}$
$\mathrm{E}=2 \times 666 \cdot 7 \times 25$
$\mathrm{E}=33300 \mathrm{~J}$
(b)

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{H}}=\mathrm{cm} \Delta \mathrm{~T} \\
& \mathrm{E}_{\mathrm{H}}=0 \cdot 2 \times 4200 \times(100-23) \\
& \underline{\mathrm{E}_{\mathrm{H}}}=64700 \mathrm{~J}
\end{aligned}
$$

14. (a)

Conductors	Insulators
Aluminium foil	Wooden cube
10 p coin	Plastic rod

(b) (i)
$\mathrm{Q}=\mathrm{It}$
$\mathrm{Q}=0 \cdot 05 \times(60 \times 2)$
$\mathrm{Q}=6$ coulombs
(ii)

The number of electrons $=\frac{\text { total charge }}{\text { charge on one electron }}$
$\mathrm{N}=\frac{6}{1.6 \times 10^{-19}}$
$\mathrm{N}=3.75 \times 10^{19}$
$\underline{\text { There are } 3.75 \times 10^{19} \text { electrons flowing in the circuit. }}$
(iii)

$$
\begin{aligned}
& \mathrm{E}=\mathrm{ItV} \\
& \mathrm{E}=6 \times 1 \cdot 5 \\
& \mathrm{E}=9 \text { joules }
\end{aligned}
$$

(c) (i) The two negative charges would repel each other.
(ii) The positive and negative charge would attract each other.
15. (a)

(b) (i)

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \\
& \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}} \\
& \mathrm{R}=\frac{230^{2}}{100} \\
& \mathrm{R}=529 \mathrm{a}
\end{aligned}
$$

(ii)

The total resistance in the circuit:

$$
\begin{align*}
\frac{1}{\mathrm{R}_{\mathrm{T}}} & =\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \\
\frac{1}{\mathrm{R}_{\mathrm{T}}} & =\frac{1}{529}+\frac{1}{529} \\
\frac{1}{\mathrm{R}_{\mathrm{T}}} & =0 \cdot 00378 \\
\mathrm{R}_{\mathrm{T}} & =264 \cdot 5 \mathrm{q} \tag{1}
\end{align*}
$$

(iii)

$$
\begin{align*}
& I=\frac{V_{\text {supply }}}{R_{T}} \\
& I=\frac{230}{264 \cdot 5} \\
& I=0 \cdot 869 \mathrm{~A}
\end{align*}
$$

(c) The voltage of bulbs in series are shared across the supply voltage.

$$
\begin{aligned}
& \text { Number of lamps }=\frac{\text { supply voltage }}{\text { operating voltage of each bulb }} \\
& \text { Number of lamps }=\frac{12}{2} \\
& \text { Number of lamps }=6
\end{aligned}
$$

16. (a)

(b) (i) The resistance is 300Ω
(ii)

$$
\begin{aligned}
& \mathrm{V}_{\text {thermistor }}=\frac{\mathrm{R}_{\text {Thermistor }}}{\mathrm{R}_{\text {Total }}} \times \mathrm{V}_{\text {supply }} \\
& \mathrm{V}_{\text {thermistor }}=\frac{300}{(300+100)} \times 12 \\
& \mathrm{~V}_{\text {thermistor }}=9 \mathrm{~V}
\end{aligned}
$$

(i) X is a transistor.
(ii) At $200^{\circ} \mathrm{C}$ the resistance is 100Ω.

Voltage across 6 q resistor $=\frac{\mathrm{R}_{6}}{\mathrm{R}_{\text {total }}} \times \mathrm{V}_{\text {supply }}$
$V=\frac{6}{(100+6)} \times 12$

$$
\mathrm{V}=0 \cdot 68 \mathrm{~V}
$$

The transistor switches at 0.68 V
(iii) When the base voltage of the transistor is 0.68 V current flows from the emitter of the transistor to the collector. The relay coil becomes magnetised and this attracts the switch S to close and complete the circuit for the fan.
17. E
18. D
19. D
20. B
21. D
22. $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
$\frac{500}{350}=\frac{\mathrm{V}_{2}}{345}$
$\mathrm{V}_{2}=493 \mathrm{~m}^{3}$

23. (a)	Q coulombs
(b)	$\mathrm{Q}=\mathrm{It}$ $200 \mathrm{I} \times(4 \times 60 \times 60)$ $\mathrm{I}=0.014 \mathrm{~A}$
(c) (i)	Voltage is a measure of the energy given to the charges in the circuit.
(c) (ii)	$\mathrm{V}=12 \overline{\mathrm{I}} 9.0=3.0 \mathrm{~V}$ $\mathrm{~V}=\mathrm{IR}$ $3.0=0.001 \times \mathrm{R}$ $\mathrm{R}=3000 \mathrm{Y}$

24. \quad (a)	$\mathrm{V}_{\text {total }}=\mathrm{V} 1+\mathrm{V} 2+\mathrm{V} 3$ $\mathrm{~V}_{\text {total }}=3.0+2.0+4.0$ $\mathrm{~V}_{\text {total }}=9.0 \mathrm{~V}$
	10 mA
(b)	$\mathrm{V}=\mathrm{IR}$ $3.0=0.010 \times \mathrm{R}$ $\mathrm{R}=300 \Omega$
	(c)
	No change

25. D

$\mathbf{2 6}$	(a)(i)	Both switches must be on for heater to come on
	(a)(ii)	Complete circuit back to battery
	(b)	Remains constant / same
	(c)	$\mathrm{P}=\mathrm{IV}$ $\mathrm{P}=5.0 \times 12$ $\mathrm{P}=60 \mathrm{~W}$

$\mathbf{2 7}$	(a)	Electronic lock = solenoid Automatic fan = motor Public address system = loudspeaker Stand by indicator = LED
	(b)	(c)
	(d) $\mathrm{V}=6.0$ $4.5=5$ $\mathrm{R}=900 \mathrm{IR} 1.5=4.5 \mathrm{~V}$	$\mathrm{Q}=\mathrm{It}$ $\mathrm{Q}=5.0 \times 10^{-3} \times \mathrm{R}$ $\mathrm{Q}=3.0 \mathrm{C}$

$\mathbf{2 8}$	(a)	LED
	(b)	$\mathrm{V}_{0}=\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right] \mathrm{V}_{\mathrm{s}}$ $\mathrm{V}_{0}=[2.4 /(21.6+2.4)] 3.0$ $\mathrm{~V}_{0}=0.30 \mathrm{~V}$
	(c)	As temperature rises the voltage over thermistor falls Voltage over 2.4 kq resistor rises When voltage over 2.4 kq resistor rises above 0.7 V the transistor switches on When transistor switches on the LED lights

Question		Marking Instructions
$\mathbf{2 9}$	(a)	$\%$ eff $=($ useful output energy $/$ input energy) $\times 100$ $40=\left(\right.$ useful output energy $\left./ 2.8 \times 10^{10}\right) \times 100$ Useful output energy $=1.12 \times 10^{10} \mathrm{~J}$
	(b)	$\mathrm{E}=\mathrm{Pt}$ $1.12 \times 10^{10}=1.2 \times 10^{9} \times \mathrm{t}$ $\mathrm{t}=9.3 \mathrm{~s}$

30. B
31. A

32	(a)	$\begin{aligned} & \mathrm{V}=230(\mathrm{~V}) \\ & -\mathrm{P}=\mathrm{IV} \\ & 1150=\mathrm{I} \times 230 \\ & \mathrm{I}=5 \cdot 00 \mathrm{~A} \end{aligned}$
	(b)	$\begin{aligned} & \mathrm{V}=\mathrm{IR} \\ & 230=5 \cdot 00 \times \mathrm{R} \\ & \mathrm{R}=46 \Omega \\ & \text { or } \\ & \mathrm{P}=\mathrm{V}^{2} / \mathrm{R} \\ & 1150=230^{2} / \mathrm{R} \\ & \mathrm{R}=46 \Omega \\ & \text { or } \\ & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ & 1150=5 \cdot 00^{2} \times \mathrm{R} \\ & \mathrm{R}=46 \Omega \end{aligned}$
	(c)(i)	can all be switched independently/ 230 V across each/ other reasonable answer
	(c)(ii)	$\begin{aligned} & 1 / \mathrm{R}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}+1 / \mathrm{R}_{4} \\ & 1 / \mathrm{R}=1 / 46+1 / 46+1 / 46+1 / 46 \\ & \mathrm{R}=11.5 \Omega \end{aligned}$
	(c)(iii)	$\begin{aligned} & \mathrm{V}=\mathrm{IR} \\ & 230=\mathrm{I} \times 11 \cdot 5 \\ & \mathrm{I}=20 \mathrm{~A} \\ & \text { or } \\ & \mathrm{I}=4 \times 5 \cdot 0 \\ & \mathrm{I}=20 \mathrm{~A} \end{aligned}$
	(c)(iv)	30 A rated greater than maximum current

34	(a)	renewable/source will not run out/does not produce greenhouse gases/other reasonable answer
	(b)	$\mathrm{E}=\mathrm{mgh}$ $\mathrm{E}=1 \cdot 20 \times 10^{5} \times 10 \times 50 \cdot 0$ $\mathrm{E}=6 \cdot 0 \times 10^{7}(\mathrm{~J})$ $\mathrm{P}=\mathrm{E} / \mathrm{t}$ $\mathrm{P}=6 \cdot 0 \times 10^{7} / 60$ $\mathrm{P}=1 \cdot 0 \times 10^{6} \mathrm{~W}$
	(c)	eff $=\mathrm{P}_{o} / \mathrm{P}_{\mathrm{i}} \times 100$ $\mathrm{eff}=400000 / 1 \cdot 0 \times 10^{6} \times 100$ $\mathrm{eff}=40 \%$
(d)	$\mathrm{P}=\mathrm{IV}$ $400000=\mathrm{I} \times 8000$ $\mathrm{I}=50 \mathrm{~A}$	

35.	(a)	$\mathrm{E}_{\mathrm{h}}=\mathrm{cm} \Delta \mathrm{T}$ $\mathrm{E}_{\mathrm{h}}=4180 \times 5.0 \times 10$ $\mathrm{E}_{\mathrm{h}}=2 \cdot 09 \times 10^{5} \mathrm{~J}$
	(b)	$\mathrm{P}=\mathrm{E} / \mathrm{t}$ $\mathrm{P}=2 \cdot 09 \times 10^{5} /(5 \times 60)$ $\mathrm{P}=700 \mathrm{~W}$
	(c)	$\mathrm{P}=\mathrm{IV}$ $700=\mathrm{I} \times 230$

		$\mathrm{I}=3.04 \mathrm{~A}$
	(d)	$\mathrm{Q}=\mathrm{It}$ $\mathrm{Q}=3.04 \times(5 \times 60)$ $\mathrm{Q}=913 \mathrm{C}$

36.

$\mathrm{W}=\mathrm{mg}$
$\mathrm{W}=90 \times 9.8$
$\mathrm{~W}=882 \mathrm{~N}$
(b)
(i) $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$ or
$\mathrm{E}_{\mathrm{p}}=90 \times 9.8 \times 400$
$\mathrm{E}_{\mathrm{p}}=\mathrm{W} \mathrm{d}$
$\mathrm{E}_{\mathrm{p}}=882 \times 400$
$\mathrm{E}_{\mathrm{p}}=352,800 \mathrm{~J}$
Total Ep $=352800 \times 3000$
Total Ep $=1058 \mathrm{MJ}$
(ii) $\mathrm{P}_{\text {out }}=\mathrm{Ext}^{\text {t }}$
$\mathrm{P}=1058 \times 10^{6} \times 60 \times 60$
$\mathrm{P} \quad=\quad 3.81 \times 10^{12} \mathrm{~W}$
Eff = Pout / Pin x 100
$67.5=3.81 \times 10^{12} /$ Pin x100
$\mathrm{P}_{\text {in }}=3.81 \times 10^{12} / 0.675$
$\mathrm{P}_{\text {in }}=5.64 \times 10^{12} \mathrm{~W}$
37.
$\mathrm{E}_{\mathrm{P}}=\mathrm{mgh}$
$\mathrm{E}_{\mathrm{P}}=1.2 \times 10 \times 0.2$
$\underline{E_{p}}=2 \cdot 4 \mathrm{~J}$
(b)

$$
\begin{aligned}
& E_{K}=E_{P} \\
& 1 / 2 \mathrm{mv}^{2}=2 \cdot 4 \\
& 0 \cdot 5 \times 1 \cdot 2 \times \mathrm{v}^{2}=2.4 \\
& \mathrm{v}=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

