**Galashiels Academy** 

# **National 5 Physics**



# **Electricity & Energy**

# **Consolidation and Revision Questions**

Name:

**Class:** 

| Elect | ricity and Energy Questions             | Date Due | Mark |
|-------|-----------------------------------------|----------|------|
| 1     | Work Done                               |          | /20  |
| 2     | Weight & Gravitational Potential Energy |          | /20  |
| 3     | Kinetic Energy                          |          | /20  |
| 4     | Conservation of Energy                  |          | /20  |
| 5     | Efficiency                              |          | /20  |
| 6     | Current                                 |          | /20  |
| 7     | Electric Charge                         |          | /20  |
| 8     | Series Circuits                         |          | /20  |
| 9     | Parallel Circuits                       |          | /20  |
| 10    | Ohm's Law                               |          | /20  |
| 11    | Resistors in Series and Parallel        |          | /20  |
| 12    | Solar Cells, Capacitors and LED's       |          | /20  |
| 13    | Voltage Dividers                        |          | /20  |
| 14    | Power                                   |          | /20  |
| 15    | Specific Heat Capacity                  |          | /20  |
| 16    | Pressure                                |          | /20  |
| 17    | Gas Laws                                |          | /20  |

| 1. | Wha          | t is meant by the ter                            | m "work"                                     |                                    |                   | 2 |
|----|--------------|--------------------------------------------------|----------------------------------------------|------------------------------------|-------------------|---|
|    |              |                                                  |                                              |                                    |                   |   |
| 2. | Сору         | and Complete the t                               | able                                         |                                    |                   | 6 |
|    |              |                                                  |                                              |                                    |                   |   |
|    |              | Work Done / J                                    | Force / N                                    | <i>Distance</i> / m                |                   |   |
|    | (a)          |                                                  | 100                                          | 30                                 |                   |   |
|    | (b)          |                                                  | 25                                           | 6.2                                |                   |   |
|    | (c)          | 300 000                                          |                                              | 150                                |                   |   |
|    | (d)          | 40                                               |                                              | 2                                  |                   |   |
|    | (e)          | 1250                                             | 125                                          |                                    |                   |   |
|    | (f)          | 144 000                                          | 3200                                         |                                    |                   |   |
|    |              |                                                  |                                              | · · · · · · ·                      |                   |   |
| 3. | Wha<br>force | t is the work done b<br>e of 480 N over a dis    | y a shopper pushing a tance of 35 metres?    | i shopping trolley w               | vith an average   | 2 |
|    |              |                                                  |                                              |                                    |                   |   |
| 4. | Wha<br>500   | t is the average forc<br>metres if her total w   | e applied by a mothei<br>ork is 150 000 J?   | r pushing a pram fo                | r a distance of   | 2 |
|    |              |                                                  |                                              |                                    |                   |   |
| 5. | Wha<br>appl  | t is the distance that<br>ies a constant force ( | a boy pushes his bike<br>of 6000 N?          | e if he does 240 000               | ) J of work and   | 2 |
|    |              |                                                  |                                              |                                    |                   |   |
| 6. | A gro        | oup of 6 snow dogs p                             | oull a sledge with an a                      | verage force of 600                | ) N each. What is | 2 |
|    | the d        | logs is 90 MJ?                                   | ige has been pulled w                        | nen the total work                 | done by all of    |   |
|    |              |                                                  |                                              |                                    |                   |   |
| 7. | In a<br>work | P.E. lesson, a pupil o<br>done by the pupil o    | f mass 58 kg climbs 12<br>Juring this climb? | 2 metres up a rope.                | . What is the     | 2 |
|    |              |                                                  |                                              |                                    |                   |   |
| 8. | The <i>i</i> | Australian Grand Priz                            | x is a race where the                        | winning car drives 3               | 308 km.           | 2 |
|    | The          | work done by a car t                             | hat completes the ful                        | l race is 2.43 x 10 <sup>°</sup> J | I. What is the    |   |
|    | aver         |                                                  |                                              |                                    |                   |   |
|    |              |                                                  |                                              |                                    | Total 20          |   |

# Exercise 2: Weight & Gravitational Potential Energy

| 1. | Сору                                                               | and complete the t                             | able                                           |                                                          |                  | 6 |
|----|--------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------|---|
|    |                                                                    | Weight / N                                     | <i>Mass /</i> kg                               | Gravitational<br>Field Strength<br>(N kg <sup>-1</sup> ) |                  |   |
|    | (a)                                                                |                                                | 3                                              | 10                                                       |                  |   |
|    | (b)                                                                |                                                | 0.25                                           | 9                                                        |                  |   |
|    | (c)                                                                | 300                                            |                                                | 10                                                       |                  |   |
|    | (d)                                                                | 210                                            |                                                | 7                                                        |                  |   |
|    | (e)                                                                | 520                                            | 65                                             |                                                          |                  |   |
|    | (f)                                                                | 3640                                           | 140                                            |                                                          |                  |   |
|    |                                                                    |                                                |                                                |                                                          |                  |   |
| 2. | A pupil with a mass of 52 kg climbs a 9 metre rope in a PE lesson. |                                                |                                                |                                                          |                  |   |
|    | a. V                                                               | Vhat is the weight c                           | of the pupil?                                  |                                                          |                  |   |
|    | b. V                                                               | Vhat is the work do                            | ne by the pupil in orde                        | er to climb the rope                                     | ?                |   |
|    | c. V                                                               | Vhat is the gravitati                          | onal potential energy                          | gained by the pupil                                      | ?                |   |
| 3. | A 450<br>What                                                      | ) g ball is dropped fr<br>is the gravitational | om a 1.5 metre high t<br>potential energy lost | able on to the grou<br>by the ball?                      | nd.              | 2 |
| 4  |                                                                    | ) a hall is thrown 1 [                         | matras into the sir                            |                                                          |                  | 2 |
| 4. | What                                                               | is the gravitational                           | notential energy gain                          | ed by the ball?                                          |                  | 2 |
|    |                                                                    |                                                | potential energy Sum                           |                                                          |                  |   |
| 5. | A hig<br>metro                                                     | h jumper gains 1107<br>es in to the air. Wha   | 7 J of gravitational potents of the high       | ential energy as she<br>gh jumper?                       | e jumps 2.05     | 2 |
|    |                                                                    |                                                |                                                |                                                          |                  |   |
| 6. | A hel<br>How                                                       | icopter has a mass of<br>far from the ground   | of 4800 kg and a gravit<br>Lis the helicopter? | ational potential er                                     | nergy of 7.2 MJ. | 2 |
|    |                                                                    |                                                |                                                |                                                          |                  |   |
|    |                                                                    |                                                |                                                |                                                          | Total 20         | · |

### **Exercise 3: Kinetic Energy**

| 1  | Сор        | y and complete the t                          | able                        |                           |                               | 6 |
|----|------------|-----------------------------------------------|-----------------------------|---------------------------|-------------------------------|---|
|    |            | Kinetic Energy / J                            | Mass / kg                   | Speed / m s <sup>-1</sup> |                               |   |
|    | (a)        |                                               | 6                           | 3                         |                               |   |
|    | (b)        |                                               | 72                          | 4.5                       |                               |   |
|    | (c)        | 101 250                                       |                             | 15                        |                               |   |
|    | (d)        | 0.75                                          |                             | 0.5                       |                               |   |
|    | (e)        | 800                                           | 25                          |                           |                               |   |
|    | (f)        | 4.8 x 10 <sup>-3</sup>                        | 1.5 x 10 <sup>-2</sup>      |                           |                               |   |
|    |            |                                               |                             |                           |                               |   |
| 2  | A go       | -kart has a kinetic er                        | nergy of 30 J when it ha    | as a speed of 0.5 m       | s <sup>-1</sup> .             | 2 |
|    | VVIIC      |                                               | Jdl !                       |                           |                               |   |
| 3. | Wha        | at is the kinetic energy                      | y of a sprinter with a r    | nass of 75 kg runni       | ng at 9.5 m s <sup>-1</sup> ? | 2 |
|    |            |                                               |                             | 0                         | 0                             |   |
| 4. | toy<br>Wha | car has a kinetic energy is the mass of the t | ergy of 24.5 mJ when it     | has a speed of 0.7        | 'm s <sup>-1</sup> .          | 2 |
|    | VVIIC      |                                               |                             |                           |                               |   |
| 5. | An a       | eroplane has a mass                           | of 3.5 x $10^5$ kg and a k  | inetic energy of 3.9      | 9375 GJ.                      | 2 |
|    | Wha        | it is the speed of the                        | aeroplane?                  |                           |                               |   |
| 6  | tov        | ear has a kinatis and                         | argy of 1, 1, 1, when it ha | c a speed of 0 F m        | e-1                           | 2 |
| 0. | Wha        | t is the mass of the f                        | toy boat?                   | s a speed of 0.5 m        | 5.                            | 2 |
|    |            |                                               |                             |                           |                               |   |
| 7. | A ca       | r of mass 1200 kg is                          | driving down a motorw       | vay with a speed of       | 70 mph                        |   |
|    | a.         | Convert the speed o                           | f the car in to metres p    | er second. (1 mile        | = 1609 metres)                | 2 |
|    | b.         | Calculate the kinetic                         | energy of the car           |                           |                               | 2 |
|    |            |                                               |                             |                           |                               |   |
|    |            |                                               |                             |                           | Total 20                      |   |

### Exercise 4: Conservation of Energy

| 1. | A 57         | 7 g tennis ball is dropped from a height of 90 cm                                                                                                               |            |  |  |  |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
|    | a.           | What is the gravitational potential energy of the tennis ball before it is dropped?                                                                             | 2          |  |  |  |
|    | b.           | What is the kinetic energy of the ball as it lands?                                                                                                             | 2          |  |  |  |
|    | c.           | What is the vertical speed of the ball as it lands on the ground?                                                                                               | 2          |  |  |  |
| 2. | Afte<br>holo | er retrieving his 46 g golf ball from a bush, a golfer takes a penalty drop by<br>ding the ball at arm's length and allowing it to drop a height of 1.5 m to th | e          |  |  |  |
|    | a.           | What is the gravitational potential energy of the ball just before it is dropped?                                                                               |            |  |  |  |
|    | b.           | What is the speed of the ball when it hits the ground?                                                                                                          | 2          |  |  |  |
|    | c.           | What is the speed of the ball when it is 0.75 metres above the ground?                                                                                          | 2          |  |  |  |
|    |              |                                                                                                                                                                 |            |  |  |  |
| 3. | An           | 85 kg skydiver jumps out of an aeroplane which is at a height of 3800                                                                                           |            |  |  |  |
|    | me           | tres. The parachute is opened at a height of 1300 metres above the groun                                                                                        | nd.        |  |  |  |
|    | a.           | What is the speed of the skydiver just before the parachute is opened                                                                                           | 2          |  |  |  |
|    | b.           | In reality, the speed of the skydiver is 55 m/s at this point.                                                                                                  | 2          |  |  |  |
|    |              | Explain the difference in the speed calculated in part (a) and the actual speed of the diver                                                                    |            |  |  |  |
|    |              |                                                                                                                                                                 |            |  |  |  |
| 4. | A bo         | ouncy ball of mass 50 g is thrown into the air with a kinetic energy of 1.6 J                                                                                   | 2          |  |  |  |
|    | a.           | What is the gravitational potential energy of the bouncy ball at its highes point?                                                                              | t <b>2</b> |  |  |  |
|    | b.           | What is the maximum height that the ball will reach?                                                                                                            |            |  |  |  |
|    |              |                                                                                                                                                                 |            |  |  |  |
|    |              | Total                                                                                                                                                           | 20         |  |  |  |

| 1.       | State                                             | e the main energy c    | hanges in each of the fo | ollowing appliance        | s:            | 6        |
|----------|---------------------------------------------------|------------------------|--------------------------|---------------------------|---------------|----------|
|          | Lamp, Microwave, Yo-yo, Solar panel, TV and Radio |                        |                          |                           |               |          |
|          |                                                   |                        |                          |                           |               |          |
| 2        | Carri                                             | rand Complete the      | tabla                    |                           |               | <u> </u> |
| Ζ.       | copy                                              | y and complete the     |                          |                           |               | O        |
|          |                                                   | Efficiency / %         | E <sub>out</sub> / J     | <i>E<sub>in</sub> /</i> J |               |          |
|          | (a)                                               |                        | 1500                     | 2500                      |               |          |
|          | (b)                                               |                        | 5 x 10 <sup>6</sup>      | 0.1 x 10 <sup>9</sup>     |               |          |
|          | (c)                                               | 43                     |                          | 6500                      |               |          |
|          | (d)                                               | 38                     |                          | 3.2 x 10 <sup>7</sup>     |               |          |
|          | (e)                                               | 5                      | 5400                     |                           |               |          |
|          | (f)                                               | 16                     | 7.8 x 10 <sup>5</sup>    |                           |               |          |
|          |                                                   |                        |                          |                           |               |          |
| 3.       | In o                                              | one minute, a motor    | in a food mixer uses up  | o 25 kJ of electrica      | l energy. The |          |
|          | kine                                              | etic energy given off  | by the motor in this tir | me is 8750 J              |               | _        |
|          | a.                                                | What is the total ei   | nergy output of the mo   |                           |               | 2        |
|          | b.                                                | How much energy        | was NOT turned in to k   | inetic energy?            |               | 2        |
| <u> </u> | С.                                                | what has happene       | a to the missing energy  | 3y :                      |               | 2        |
| 4.       | Wh                                                | at is the efficiency o | f the motor in the food  | l mixer (from ques        | tion 3) that  | 2        |
|          | give                                              | es out 8750 J of kine  | tic energy when it uses  | up 25 kJ of electri       | cal energy    |          |
| <u> </u> |                                                   |                        |                          |                           |               |          |
|          |                                                   |                        |                          |                           | Total 20      |          |

#### **Exercise 6: Current**



| -  |                                                                                                                                                               |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1. | In a classroom experiment, two metal spheres are hung from a thread, as shown.                                                                                | 4 |
|    | Copy the diagrams and show the direction of movement of each sphere.                                                                                          |   |
|    | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                        |   |
|    |                                                                                                                                                               |   |
| 2. | Cling film is used to keep to keep food fresh, it is sticky because of charges.                                                                               |   |
|    | a. Describe how a piece of cling film becomes charged.                                                                                                        | 2 |
|    | <ul> <li>Explain why cling film will stick to a plastic bowl for a long time but loses its<br/>sticking power quickly when placed on a metal bowl.</li> </ul> | 2 |
|    |                                                                                                                                                               |   |
| 3. | Copy and complete these diagrams to show the direction of the electric field                                                                                  | 4 |
|    | a.       +       b.       -       c.       +       -         d.       +       +       +       +       +       +                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
| _  | Convities diagram and add the nation of the following particles entering at right                                                                             | 6 |
| 4. | copy this diagram and add the paths of the following particles entering at right                                                                              | 0 |
|    | angles to the electric field. <b>a.</b> Electron <b>b.</b> Proton <b>c.</b> Neutron                                                                           |   |
|    | + + + + + + + + + + + + + + + + + + + +                                                                                                                       |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
|    |                                                                                                                                                               |   |
| 5  | An alpha particle, a bota particle and a gamma ray opter an electric field at right                                                                           |   |
| 5. | angles to the field. Which letter shows the most likely position of each particle?                                                                            |   |
|    | + + + + + + + + + + +                                                                                                                                         |   |
|    | ● → Z                                                                                                                                                         |   |
|    | ×                                                                                                                                                             |   |
|    |                                                                                                                                                               |   |
|    | Y Y                                                                                                                                                           |   |
|    |                                                                                                                                                               |   |
|    | Total 20                                                                                                                                                      |   |

#### **Exercise 8: Series Circuits**





|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                               |                 |   |  |
|----|------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|---|--|
| 1  | What                         | What is meant by the 'resistance' of a component?   1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 2. | What                         | What are the units for resistance?                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 3. | Copy and complete this table |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
|    |                              | Voltage / V                                           | Current / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Resistance / Ω                  |                 |   |  |
|    | (a)                          |                                                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150                             |                 |   |  |
|    | (b)                          |                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                              |                 |   |  |
|    | (c)                          | 12                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                              |                 |   |  |
|    | (d)                          | 8                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400                             |                 |   |  |
|    | (e)                          | 230                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                 |   |  |
|    | (f)                          | 10                                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                 |   |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 4. | What<br>wher                 | t is the resistance on there is a potentia            | of a lamp that allows 60<br>al difference of 12 V ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 mA of current to<br>cross it | flow through it | 2 |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 5. | What<br>volta                | t is the current flow<br>ge of 15 V is across         | ving through a piece of<br>it?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f 10 kΩ resistance v            | vire when a     | 2 |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 6. | What<br>throu                | t is the voltage acro<br>Igh it?                      | oss a 1500 Ω resistor the second se | hat has a current of            | 10 mA flowing   | 2 |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 7. | What<br>throu                | t is the voltage acro<br>ugh it?                      | oss a 125 Ω lamp that l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | has a current of 1.8            | 4 A flowing     | 2 |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
| 8. | What<br>throu                | t is the voltage acro<br>ugh it?                      | oss a 125 Ω lamp that $ m I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | has a current of 1.84           | 4 A flowing     | 2 |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |   |  |
|    |                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                               | Total 20        |   |  |

#### **Exercise 11: Resistors in Series and Parallel**



#### Exercise 12: Solar Cells, Capacitors and LED's





| 1. | A stu<br>Wha | student makes a statement: 'The power of a light bulb is 60 W.' |                         |                    |             |   |  |
|----|--------------|-----------------------------------------------------------------|-------------------------|--------------------|-------------|---|--|
|    |              |                                                                 |                         | C187.              |             |   |  |
| 2. | Сору         | and complete this t                                             | able                    | /                  |             | 6 |  |
|    |              | Power / W                                                       | Energy / J              | lime / s           |             |   |  |
|    | (a)          |                                                                 | 800                     | 10                 |             |   |  |
|    | (b)          |                                                                 | 5100                    | 60                 |             |   |  |
|    | (c)          | 1500                                                            |                         | 30                 |             |   |  |
|    | (d)          | 1450                                                            |                         | 900                |             |   |  |
|    | (e)          | 218                                                             | 54 500                  |                    |             |   |  |
|    | (f)          | 1500                                                            | 210 000                 |                    |             |   |  |
| 3. | Wha<br>minu  | t is the power of a ra<br>ites?                                 | adio that uses up 27 kJ | of electrical ener | gy in five  | 2 |  |
| 4. | How          | much electrical ene                                             | rgy is used up by a 725 | W fridge in one o  | day?        | 2 |  |
| 5. | How<br>ener  | long will it take a 1.<br>gy?                                   | 2 kW vacuum cleaner t   | o use up 720 kJ o  | felectrical | 2 |  |
| 6. | Сору         | and complete the t                                              | able:                   |                    |             | 6 |  |
|    |              | Power / W                                                       | Current / A             | Voltage / V        |             |   |  |
|    | (a)          |                                                                 | 0.3                     | 4.5                |             |   |  |
|    | (b)          |                                                                 | 1.5                     | 12                 |             |   |  |
|    | (c)          | 750                                                             |                         | 25                 |             |   |  |
|    | (d)          | 1150                                                            |                         | 230                |             |   |  |
|    | (e)          | 40                                                              | 0.8                     |                    |             |   |  |
|    | (f)          | 30                                                              | 0.75                    |                    |             |   |  |
|    |              |                                                                 | ·                       |                    | Total 30    |   |  |
|    |              |                                                                 |                         |                    | 1013120     |   |  |

# Exercise 15: Specific Heat Capacity

| 1.       | Wha             | t is the difference                       | between heat and tempe                                          | erature?         |                               | 1 |
|----------|-----------------|-------------------------------------------|-----------------------------------------------------------------|------------------|-------------------------------|---|
|          |                 |                                           |                                                                 |                  |                               |   |
| 2        | Con             | vand Complete th                          | e tahle                                                         |                  |                               | 8 |
| <u> </u> |                 | Heat Energy / J                           | Specific Heat Capacity<br>/ J kg <sup>-1</sup> °C <sup>-1</sup> | Mass / kg        | Change in<br>Temperature / °C | 0 |
|          | (a)             |                                           | 2350                                                            | 2.0              | 10                            |   |
|          | (b)             |                                           | 902                                                             | 5.0              | 25                            |   |
|          | (c)             | 36 900                                    |                                                                 | 4.5              | 2                             |   |
|          | (d)             | 6885                                      |                                                                 | 0.75             | 34                            |   |
|          | (e)             | 10 080                                    | 2100                                                            |                  | 12                            |   |
|          | (f)             | 105 600                                   | 480                                                             |                  | 40                            |   |
|          | (g)             | 2400                                      | 128                                                             | 2.5              |                               |   |
|          | (h)             | 27 690                                    | 2130                                                            | 3.25             |                               |   |
|          |                 |                                           |                                                                 |                  |                               |   |
| <b>F</b> | A 2 /           | 1 kg lump of brace                        | ic hosted up by a Pupcon                                        | hurnor Whon (    | 120 L of boot                 | 2 |
| J.       | ener<br>is th   | gy has been absor<br>e specific heat cap  | bed, the temperature of a city of the brass?                    | the brass increa | ses by 10 °C. What            | 2 |
|          |                 |                                           |                                                                 |                  |                               |   |
| 6.       | A pa<br>if it i | ne of glass has a m<br>s heated by 1000 J | hass of 800 g. What is the of heat energy?                      | temperature ch   | nange of the glass            | 2 |
|          |                 |                                           | 07                                                              |                  |                               |   |
| 7.       | A blo           | ock of lead is heate                      | ed from 24 °C to 28°C by a sthe mass of the lead blo            | a heat source th | at gives off 6144 J           | 2 |
|          |                 |                                           |                                                                 |                  |                               |   |
| 8.       | Wha             | it is the heat energ                      | y required to heat 3.0 kg                                       | of water from 2  | 20 °C to 80°C?                | 2 |
| <u>م</u> | Doc             | ribe how heat tray                        | vels hv:                                                        |                  |                               | 2 |
| 9.       | a.              | Conduction                                | 7eis by.                                                        |                  |                               | 3 |
| -        | b.              | Convection                                |                                                                 |                  |                               |   |
|          | C.              | Radiation                                 |                                                                 |                  |                               |   |
|          |                 |                                           |                                                                 |                  |                               |   |
|          |                 |                                           |                                                                 |                  | Total 20                      |   |

#### **Exercise 16: Pressure**

| 1. | Expl         | ain the term pressure                           | e using the words force   | e and <i>area</i>            |                  | 1 |
|----|--------------|-------------------------------------------------|---------------------------|------------------------------|------------------|---|
|    |              |                                                 |                           |                              |                  |   |
| -  | 6            |                                                 |                           |                              |                  | _ |
| 2. | Сор          | y and Complete the t                            | able                      |                              |                  | 5 |
|    |              | Pressure / Pa                                   | Force / N                 | <i>Area /</i> m <sup>2</sup> |                  |   |
|    | (a)          |                                                 | 120                       | 1.6                          |                  |   |
|    | (b)          |                                                 | 4000                      | 0.5                          |                  |   |
|    | (c)          | 1.1 x 10 <sup>5</sup>                           |                           | 2.0                          |                  |   |
|    | (d)          | 9000                                            |                           | 8.0 x 10 <sup>-2</sup>       |                  |   |
|    | (e)          | 12 000                                          | 7.2 x 10 <sup>5</sup>     |                              |                  |   |
|    |              |                                                 |                           |                              |                  |   |
|    |              |                                                 |                           |                              |                  |   |
| 3. | A 48         | 0 g tin of baked bear                           | ns is a cylinder with a r | adius of 3.2 cm. It          | is placed on a   | 2 |
|    | kitch        | hen counter. What is                            | the pressure on the co    | ounter caused by t           | he tin?          |   |
| _  | A co         | r of mass 1250 kg is d                          | driven en te a bridge T   | be prossure on th            | o curfaco of tho | 2 |
| 4. | A Ca<br>brid | r of mass 1250 kg is (<br>ge when all four tyre | s are on the ground is    | 39 0 kPa What is t           | the contact area | 2 |
|    | of o         | <i>ne</i> tyre on the bridge                    | ?                         |                              |                  |   |
|    |              |                                                 |                           |                              |                  |   |
| 5. | Are          | you more likely to fal                          | ll through an icy lake if | you are on your t            | ip toes or lying | 2 |
|    | flat         | on your back with yo                            | ur arms and legs streto   | ched out? Explain            | our answer.      |   |
| _  |              |                                                 |                           |                              |                  |   |
| 6. | A te         | levision has a length                           | of 124 cm, a height       |                              |                  |   |
|    | If it        | has a mass of 30 kg s                           | what is the               |                              | 93 cm            |   |
|    | a.           | Maximum pressure t                              | hat the television can    | —                            | -     -          | 2 |
|    |              | exert on a surface?                             |                           |                              | 8.0 cm           |   |
|    | b.           | Minimum pressure t                              | hat the television can    | 124 cm                       | n 8.0 cm -       | 2 |
|    |              | exert on a surface?                             |                           |                              |                  |   |
| _  | -            |                                                 |                           | <u> </u>                     |                  |   |
| /. | By n         | neasuring your weigh                            | it and the area of your   | reet, calculate the          | e pressure that  |   |
|    | you<br>a     | You stand normally                              | 1011.                     |                              |                  | 2 |
|    | b.           | You stand on one for                            | ot                        |                              |                  | 2 |
|    |              |                                                 |                           |                              | Total 20         |   |

#### Exercise 17: Gas Laws

| 1. | <ul> <li>Explain, using the kinetic theory of particles, what happens to the particles in a<br/>liquid when it melts and becomes a gas.</li> </ul>                                                                                                                     |   |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
| 2. | Explain, using kinetic theory, how the air in a bicycle tyre creates pressure on the inside surface of the tyre                                                                                                                                                        | 2 |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
| 3. | Why does the Kelvin temperature scale start at -273 °C?                                                                                                                                                                                                                | 2 |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
| 4. | Convert these temperatures from degrees Celsius to Kelvin.                                                                                                                                                                                                             | 4 |  |  |  |
|    | a. 0 °C b. 20 °C c273 °C d. 100 °C                                                                                                                                                                                                                                     |   |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
| 5. | Explain, using the appropriate gas law, why it is important that car tyres are not filled up with so much air that the air pressure is above the car manufacturer's guidelines?                                                                                        | 2 |  |  |  |
| 6. | At a temperature of 20 °C, the pressure of a fixed mass of gas in a sealed<br>container is found to be 104 kPa. The gas is heated to a uniform temperature of<br>90 °C using a heat bath.<br>What is the pressure of the gas at a temperature of 90 °C?                |   |  |  |  |
| 7. | The pressure of the air in a lorry tyre is found to be 2.58 x 10 <sup>5</sup> Pa at the end of a journey.<br>Once the tyre has cooled down, the temperature of the air inside the tyre is found to be 10 °C with the pressure decreasing to 2.41 x 10 <sup>5</sup> Pa. | 2 |  |  |  |
|    | What was the temperature of the air in the tyre at the end of the journey? Give your answer in degrees Celsius.                                                                                                                                                        |   |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
| 8. | A 5 cm <sup>3</sup> syringe is filled with air and the pressure of the air is found to be 1.01 x 10 <sup>5</sup> Pa. The syringe plunger is then pushed until there is 3 cm <sup>3</sup> of air. What is the new air pressure?                                         | 2 |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
| 9. | A scuba diving air tank has a volume of 7.5 litres and is filled with air at a pressure of 1.21 x 10 <sup>7</sup> Pa. What volume of air will be released by the tank at atmospheric pressure (1.01 x 10 <sup>5</sup> Pa)?                                             | 2 |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |
|    | Total 20                                                                                                                                                                                                                                                               |   |  |  |  |
|    |                                                                                                                                                                                                                                                                        |   |  |  |  |