Galashiels Academy
 National 5 Physics

Electricity \& Energy

Consolidation and Revision Questions

Electricity and Energy Questions		Date Due	Mark
1	Work Done		/20
2	Weight \& Gravitational Potential Energy		/20
3	Kinetic Energy		/20
4	Conservation of Energy		/20
5	Efficiency		/20
6	Current		/20
7	Electric Charge		/20
8	Series Circuits		/20
9	Parallel Circuits		/20
10	Ohm's Law		/20
11	Resistors in Series and Parallel		/20
12	Solar Cells, Capacitors and LED's		/20
13	Voltage Dividers		/20
14	Power		/20
15	Specific Heat Capacity		/20
16	Pressure		/20
17	Gas Laws		/20

Exercise 1: Work Done

Exercise 2: Weight \& Gravitational Potential Energy

Exercise 3: Kinetic Energy

Exercise 4: Conservation of Energy

Exercise 5: Efficiency

Exercise 6: Current

Exercise 7: Electric Charge

1. In a classroom experiment, two metal spheres are hung from a thread, as shown. Copy the diagrams and show the direction of movement of each sphere.

2. Copy this diagram and add the paths of the following particles entering at right angles to the electric field:
a. Electron
b. Proton
c. Neutron

Exercise 8: Series Circuits

Exercise 9: Parallel Circuits

1. State the two rules for finding current and voltage in a parallel circuit.

Exercise 10: Ohm's Law

What is meant by the 'resistance' of a component?			
What are the units for resistance?			
Copy and complete this table			
	Voltage / V	Current / A	Resistance / Ω
(a)		0.4	150
(b)		0.05	40
(c)	12		60
(d)	8		400
(e)	230	5	
(f)	10	0.08	

4. What is the resistance of a lamp that allows 600 mA of current to flow through it when there is a potential difference of 12 V across it
5. What is the current flowing through a piece of $10 \mathrm{k} \Omega$ resistance wire when a voltage of 15 V is across it?
6. What is the voltage across a 1500Ω resistor that has a current of 10 mA flowing through it?
7. What is the voltage across a 125Ω lamp that has a current of 1.84 A flowing through it?
8. What is the voltage across a 125Ω lamp that has a current of 1.84 A flowing through it?

Exercise 11: Resistors in Series and Parallel

Exercise 12: Solar Cells, Capacitors and LED's

Exercise 13: Voltage Dividers

1. What happens to the voltage across a resistor as the resistance of the it is
2. Calculate the value of resistor R_{2} in each of these voltage divider circuits

(b) +20 V

(c) +9 V

3. Calculate the voltages V_{1} and V_{2} in each of these voltage divider circuits.
(a) +12 V

(b) +14 V

(c) +10 V

(d) +22 V

(e) +18 V

(f)

Total 20

Exercise 14: Power

1. A student makes a statement: 'The power of a light bulb is 60 W.'

2
What does this statement mean, in terms of energy?
2. Copy and complete this table 6

(a)	Power / W	Energy / J	Time / s
		800	10
(c)	1500	5100	60
(d)	1450		30
(e)	218	54500	900
		1500	210000

3. What is the power of a radio that uses up 27 kJ of electrical energy in five minutes?
4. How much electrical energy is used up by a 725 W fridge in one day?
5. How long will it take a 1.2 kW vacuum cleaner to use up 720 kJ of electrical energy?
6. Copy and complete the table:

	Power / W	Current / A	Voltage / V
(a)		0.3	4.5
(b)		1.5	12
(c)	750		25
(d)	1150		
(e)	40	0.8	230
	(f)	30	

Exercise 15: Specific Heat Capacity

Exercise 16: Pressure

Exercise 17: Gas Laws

1.	Explain, using the kinetic theory of particles, what happens to the particles in a liquid when it melts and becomes a gas.	2
2.	Explain, using kinetic theory, how the air in a bicycle tyre creates pressure on the inside surface of the tyre	2
3.	Why does the Kelvin temperature scale start at $-273{ }^{\circ} \mathrm{C}$?	2
4.	Convert these temperatures from degrees Celsius to Kelvin.	4
	a. $0^{\circ} \mathrm{C}$ b. $20^{\circ} \mathrm{C}$ c. $-273{ }^{\circ} \mathrm{C}$ d. $100^{\circ} \mathrm{C}$	
5.	Explain, using the appropriate gas law, why it is important that car tyres are not filled up with so much air that the air pressure is above the car manufacturer's guidelines?	2
6.	At a temperature of $20^{\circ} \mathrm{C}$, the pressure of a fixed mass of gas in a sealed container is found to be 104 kPa . The gas is heated to a uniform temperature of $90^{\circ} \mathrm{C}$ using a heat bath. What is the pressure of the gas at a temperature of $90^{\circ} \mathrm{C}$?	2
7.	The pressure of the air in a lorry tyre is found to be $2.58 \times 10^{5} \mathrm{~Pa}$ at the end of a journey. Once the tyre has cooled down, the temperature of the air inside the tyre is found to be $10^{\circ} \mathrm{C}$ with the pressure decreasing to $2.41 \times 10^{5} \mathrm{~Pa}$. What was the temperature of the air in the tyre at the end of the journey? Give your answer in degrees Celsius.	2
8.	A $5 \mathrm{~cm}^{3}$ syringe is filled with air and the pressure of the air is found to be $1.01 \times 10^{5} \mathrm{~Pa}$. The syringe plunger is then pushed until there is $3 \mathrm{~cm}^{3}$ of air. What is the new air pressure?	2
9.	A scuba diving air tank has a volume of 7.5 litres and is filled with air at a pressure of $1.21 \times 10^{7} \mathrm{~Pa}$. What volume of air will be released by the tank at atmospheric pressure ($1.01 \times 10^{5} \mathrm{~Pa}$)?	2
	Total 20	

