Galashiels Academy

National 5 Physics

Radiation \& Waves
Consolidation and Revision Questions

Name:
Class:

Radiation and Waves Questions		Date Due	Mark
1	Wave Properties		$/ 20$
2	Wave Speed		$/ 20$
3	Wave Equation		$/ 20$
4	Sound Waves		$/ 20$
5	Electromagnetic Spectrum		$/ 20$
6	Diffraction		$/ 20$
7	Refraction		$/ 20$
8	Focal Length		$/ 20$
9	Properties of Radiation		$/ 20$
10	Activity		$/ 20$
11	Half Life		$/ 20$
12	Absorbed Dose \& Equivalent Dose		
13	Nuclear Fission \& Fusion		

Speed of light in materials

Material	Speed in m / s
Air	3.0×10^{8}
Carbon dioxide	3.0×10^{8}
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	2.1×10^{8}
Water	2.3×10^{8}

Gravitational field strengths

	Gravitational field strength on the surface in N / kg
Earth	10
Jupiter	26
Mars	4
Mercury	4
Moon	$1 \cdot 6$
Neptune	12
Saturn	11
Sun	270
Venus	9

Specific latent heat of fusion of materials

Material	Specific latent heat of fusion in J / kg
Alcohol	0.99×10^{5}
Aluminium	3.95×10^{5}
Carbon Dioxide	1.80×10^{5}
Copper	2.05×10^{5}
Iron	2.67×10^{5}
Lead	0.25×10^{5}
Water	3.34×10^{5}

Specific latent heat of vaporisation of materials

Material	Specific latent heat of vaporisation in J / kg
Alcohol	11.2×10^{5}
Carbon Dioxide	3.77×10^{5}
Glycerol	8.30×10^{5}
Turpentine	2.90×10^{5}
Water	22.6×10^{5}

Speed of sound in materials

Material	Speed in m / s
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

Specific heat capacity of materials

Material	Specific heat capacity in $\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
Alcohol	2350
Aluminium	902
Copper	386
Glass	500
Ice	2100
Iron	480
Lead	128
Oil	2130
Water	4180

Melting and boiling points of materials

Material	Melting point in ${ }^{\circ} \mathrm{C}$	Boiling point in ${ }^{\circ} \mathrm{C}$
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Iron	1537	2737

Radiation weighting factors

Type of radiation	Radiation weighting factor
alpha	20
beta	1
fast neutrons	10
gamma	1
slow neutrons	3

Exercise 1: Wave Properties

Exercise 2: Wave Speed

Exercise 3: Wave Equation

Exercise 4: Sound Waves

1. Describe how you would measure the speed of sound in air using the following equipment:

An electronic timer, 2 microphones, a metre stick, a bottle and a knife.

Include in your description all the measurements you would take and state the instruments you would use to measure them.

| 2. a) State the speed of sound in air | $\mathbf{1}$ |
| :--- | :--- | :--- |

b) How far will a sound wave travel through air in 5 seconds? $\quad \mathbf{2}$
c) A sound wave has a frequency of 800 Hz . What is it's wavelength? $\quad \mathbf{2}$
3. An ultrasound sound wave from a dolphin travels through water with a wavelength of 3 cm . The wave travels a distance of 150 metres to a second dolphin.
a) How long does it take the ultrasound wave to reach the second dolphin? $\quad \mathbf{2}$
b) What is the frequency of the ultrasound wave? $\quad \mathbf{2}$
4. A car is fitted with a parking system. This warns how close objects are behind the car. Equipment on the back of the car sends out ultrasound waves and receives the reflected waves.

| | 2 |
| :--- | :--- | :--- |
| There is a 5 ms gap between a wave been transmitted and received. | |
| How far away is a wall from the back of the car? | |

Exercise 5: Electromagnetic Spectrum

1.	Write out the EM spectrum in order of increasing wavelength	$\mathbf{2}$
2.	State the speed of an EM wave in a vacuum	$\mathbf{2}$
3.	Describe what happens to the energy and wavelength of an EM wave as the frequency increases.	$\mathbf{2}$
4.	Describe an application of each of these types of electromagnetic radiation in medicine:	$\mathbf{4}$
	a)X-rays	
	b)	Gamma Rays
	c)	Infrared Radiation
	d)	Ultraviolet Radiation

Exercise 6: Diffraction

| 1. | What is meant by Diffraction? | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| 2. | Copy and complete these diagrams to show water waves bending around an
 obstacle | $\mathbf{2}$ |

Exercise 7: Refraction

1. What is meant by the term refraction? $\quad \mathbf{1}$
2. Copy this diagram and label it with the following:

Incident ray, Refracted ray, Angle of incidence, Angle of refraction, Normal.

3. Which of these diagrams shows what happens when a ray of light:

- travels from air in to glass at an angle above the critical angle of glass?
- travels from glass in to air at an angle above the critical angle of glass?
- travels from air in to water at an angle less than the critical angle of water?
- travels from water in to air at an angle less than the critical angle of water?

4. A student is given a Perspex block, a pencil, a protractor, a ruler, a piece of blank

A4 paper, a ray box and a power supply.
Describe how the student could use this equipment to find the critical angle of Perspex.
5. Copy and complete these diagrams to show the effect the lenses have on parallel $\mathbf{6}$ incident rays of light.

Exercise 8: Focal Length

Exercise 9: Properties of Radiation

Exercise 10: Activity

Exercise 11: Half Life

Exercise 12: Absorbed Dose \& Equivalent Dose

Exercise 13: Nuclear Fission \& Fusion

	What is nuclear fission? (Draw a diagram to help you explain)	2
2.	What is a chain reaction in nuclear fission?	2
3.	How does a fission reaction create heat energy?	1
4.	Describe the purpose of each of these parts of a nuclear reactor: Gas, Control Rods, Containment Vessel, Graphite Moderator, Uranium Rods	5
5.	How is the heat energy from a nuclear reactor used to generate electricity?	2
6.	What is nuclear fusion? (Draw a diagram to help you explain)	2
7.	There is much debate in the UK about using nuclear power to generate electrical energy. Construct a table that shows the advantages and disadvantages of using nuclear energy to power the country.	6
	Total 20	

