Galashiels Academy

National 5 Physics

Radiation & Waves

Consolidation and Revision Questions

Name:

Class:

Rad	Radiation and Waves Questions Date Due		
1	Wave Properties		/20
2	Wave Speed		/20
3	Wave Equation		/20
4	Sound Waves		/20
5	Electromagnetic Spectrum		/20
6	Diffraction		/20
7	Refraction		/20
8	Focal Length		/20
9	Properties of Radiation		/20
10	Activity		/20
11	Half Life		/20
12	Absorbed Dose & Equivalent Dose		/20
13	Nuclear Fission & Fusion		/20

DATA SHEET

Speed of light in materials

Material	Speed in m/s
Air	3.0×10^{8}
Carbon dioxide	3.0×10^{8}
Diamond	1.2×10^{8}
Glass	2.0×10^{8}
Glycerol	$2 \cdot 1 \times 10^{8}$
Water	2.3×10^{8}

Speed of sound in materials

Material	Speed in m/s
Aluminium	5200
Air	340
Bone	4100
Carbon dioxide	270
Glycerol	1900
Muscle	1600
Steel	5200
Tissue	1500
Water	1500

Gravitational field strengths

	Gravitational field strength on the surface in N/kg
Earth	10
Jupiter	26
Mars	4
Mercury	4
Moon	1.6
Neptune	12
Saturn	11
Sun	270
Venus	9

Specific latent heat of fusion of materials

Material	Specific latent heat of fusion in J/kg
Alcohol	0.99×10^{5}
Aluminium	3.95×10^{5}
Carbon Dioxide	1.80×10^{5}
Copper	2.05×10^{5}
Iron	2.67×10^{5}
Lead	0.25×10^{5}
Water	3.34×10^{5}

Specific latent heat of vaporisation of materials

Material	Specific latent heat of vaporisation in J/kg
Alcohol	11.2×10^5
Carbon Dioxide	3.77×10^{5}
Glycerol	8.30×10^{5}
Turpentine	2.90×10^{5}
Water	22.6×10^5

Specific heat capacity of materials

Material	Specific heat capacity in J/kg °C
Alcohol	2350
Aluminium	902
Copper	386
Glass	500
Ice	2100
Iron	480
Lead	128
Oil	2130
Water	4180

Melting and boiling points of materials

Material	Melting point in °C	Boiling point in °C
Alcohol	-98	65
Aluminium	660	2470
Copper	1077	2567
Glycerol	18	290
Lead	328	1737
Iron	1537	2737

Radiation weighting factors

Type of radiation	Radiation weighting factor
alpha	20
beta	1
fast neutrons	10
gamma	1
slow neutrons	3

Exercise 1: Wave Properties

1.	Copy and complete this sentence:	1
	can be transferred from one place to another as waves.	
2.	What is the meaning of the term 'transverse' when describing waves?	1
3.	What is the meaning of the term 'longitudinal' when describing waves?	1
4.	Copy this diagram of a wave and label the following:	5
	Wavelength, Amplitude, Crest, Trough, Axis	
5.	Describe the following properties of waves	4
	a) Wavelength	
	b) Frequency	
	c) Amplitude	
	d) Wave speed	
6.	Water waves are represented in these diagrams. Calculate the wavelength and	8
	amplitude of each wave.	
	(a) 12 m (b) 20 m	
	(c) 5 m (d) 20 m	
	(c) 5 m (d) 30 m	
	Total 20	

1.	Copy and complete	e the table			-	6
		Speed / m s ⁻¹	<i>Distance</i> / m	Time / s		
	(a)		50	20		
	(b)		280	1120		
	(c)	12		0.8		
	(d)	340		3.5		
	(e)	6.8	272			
	(f)	95	475			
2. 3.	A water wave trave seconds. What is the A wave moves alor	ne speed of the v	vater wave? speed of 0.75 m	s ⁻¹ . The wave tra		2 2 2
4.	length of the slinky A seismic wave tra How long does it ta	vels through the	ground at 2.5 km		hquake.	2
5.	A water wave trave How far does it tra	-	of 4 m/s for 2 mir	nutes.		2
6.	A wave travels thro How long does it ta					2
7.	A water wave trave What is the speed					2
8	A wave travels 300 What is the speed					2
					Total 20	<u> </u>

1	Copy and com	plete the table			6
		Speed / m s ⁻¹	Frequency / Hz	<i>Wavelength /</i> m	
	(a)		800	4	
	(b)		40 000	0.0085	
	(c)	5		0.25	
	(d)	690		2.3	
	(e)	45	15		
	(f)	180	750		
3. 4.	What is the fr A wave of free	equency of the wa	speed of 20 m s ⁻¹ in		of 7.0 cm. 2
5.		e of frequency 8.5 k vavelength of the w	xHz has a speed of 34 vave?	$40 \mathrm{~m~s}^{-1}$ in air.	2
6.	pass him in th a) What is tl	is time he frequency of the	arbour in 40 s. A life e wave?	guard counts that 80	2
		he wave speed? the wavelength of	the wave.		2
					Total 20

Des	ribe how you would measure the speed of sound in air using	the following 3
	An electronic timer, 2 microphones, a metre stick, a bottle a	and a knife.
		and state the
a)	State the speed of sound in air	1
		2
c)		ngth? 2
wa	velength of 3 cm. The wave travels a distance of 150 metres t	
		ond dolphin? 2
, b)	What is the frequency of the ultrasound wave?	2
car.	Equipment on the back of the car sends out ultrasound wave	
	transmitted reflected	2 wall
		ed.
Stat	e two other uses for ultrasounds in industry or medicine.	2
Expl	ain why there is a delay between seeing lightning and hearing	g thunder. 2
		Total 20
	equi Inclu instr a) b) c) An dol a) b) Aca car. the the the state	 Include in your description all the measurements you would take instruments you would use to measure them. a) State the speed of sound in air b) How far will a sound wave travel through air in 5 seconds? c) A sound wave has a frequency of 800 Hz. What is it's waveler An ultrasound sound wave from a dolphin travels through water wavelength of 3 cm. The wave travels a distance of 150 metres t dolphin. a) How long does it take the ultrasound wave to reach the second b) What is the frequency of the ultrasound wave? A car is fitted with a parking system. This warns how close objects car. Equipment on the back of the car sends out ultrasound wave the reflected waves.

Exercise 5: Electromagnetic Spectrum

1.	Wri	te out the EM spectrum in order of increasing wavelength		2
2.	Sta	te the speed of an EM wave in a vacuum		2
3.		cribe what happens to the energy and wavelength of an EM w	vave as the	2
	frec	quency increases.		
4.		cribe an application of each of these types of electromagnetic dicine:	radiation in	4
	a)	X-rays		
	b)	Gamma Rays		
	c)	Infrared Radiation		
	d)	Ultraviolet Radiation		
5.	Des hor	cribe an application of each of these types of electromagnetic ne	radiation in the	2
	a)	Infrared Radiation		
	b)	Microwaves		
6.		y are gamma rays unsuitable for using in mobile phone comm e two reasons for your answer	unication?	2
7.	Нο	I volume to a start of the s	er?	2
8.	97.	adio carrier wave is sent out from BBC Radio 1 in London with a 5 MHz. A student in Edinburgh (which is 670 km away) is listen adcast.		
		What is the wavelength of this radio wave?		2
		How long will it take the wave to travel from London to Edink	ourgh?	2
<u> </u>			Total 20	

Exercise 6: Diffraction

1.	What is meant by Diffraction?	2
2.	Copy and complete these diagrams to show water waves bending around an obstacle	2
	(a) (b) (b)	
3.	A hill lies between a radio and television transmitter and a house. The house is	
	within the range of both the radio and television signals from the transmitter radio and television transmitter TV aerial house	
	 a) The house has good radio reception but poor television reception. Suggest an explanation for this. 	2
	 b) A mobile phone transmitter emits microwaves and is attached to the existing transmitter. Predict whether the mobile phone reception will be good or poor in the house. Give a reason for your answer. 	2
	 c) Explain why you cannot watch TV but the picture from a DVD playing in the house perfect 	2
4.	Kate has gone to see Green Day in London: her seat is only 150m from the stage. Her brother John is in Kelso listening to it live on Radio One. Who will hear the music first? Explain your answer.	4
5.	 FM radio stations broadcast at a higher frequency than MW. Victoria lives in a deep valley, her radio designed to pick up both FM and MW but she can only listen to broadcasts carried by one type of wave. 	
	a) Which broadcast does Victoria listen to?	2
	b) Explain why she receives this broadcast but not the other.	2
	Total 20	<u> </u>

Exercise 7: Refraction

Exercise 8: Focal Length

1.	A st	ude	nt makes t	he following state					2
				"The focal leng	th of a co	onvex	lens is 15 cm.	"	
	Wha	at is	the mean	ing of this stateme	nt?				
2.	Calc	ulat	e the foca	l lengths of conver	k lenses v	with 1	the following	powers:	6
	a.	+ 4.	5 D						
	b.	+ 1.	5 D						
	c.	+ 5.	0 D						
3.	Co	py ai	nd comple	te these ray diagra	ims to sh	low t	he image proc	duced.	6
	(a	a)				(b))		
			Ť			t			
						obje	ct .		-
		f	0.0,000	f		0.5,0	ct f	f	
			Conve	ex lens			Conve	x lens	
	For	r eac	h ray diag	ram, state whethe	r the ima	ige is	:		
			Real or	virtual.					
			 Magnif 	ied or diminished.					
			 Upright 	t or inverted.					
4.	Sta	ite w	hat is the	meant by the follo	wing eye	e defe	ects and state	the lens needed	
	to	corre	ect each.						
	a.	Sho	ort sighted	1					2
	b.	Lor	ng sighted						2
5.	A li	ifegu	ard is lool	king at a swimmer	in a pool	. Exp	lain, with the	aid of a diagram,	2
	wh	y th	e lifeguarc	l sees the swimme	r at poin [.]	t B ra	ther than her	actual position at	,
	poi	int A	?						
								3	
								2-5	
		air						K=A	
	v	vate	r					HERN.	
		, acc.							
				, <i>J</i>					
	E	3		A					
<u> </u>									1
								Total 20	

Exercise 9: Properties of Radiation

1.	Des	scribe wha	at the followin	g radiations	are mad	e up of.			3
	a)	Alpha							
	b)	Beta							
	c)	Gamma							
2.	Wh	at is the n	neaning of the	e term 'ionis	ation'?				1
2	Cor	wood cor	malata this tak	la ta chavri	the prop	ortion of rodi	iation		3
3.	COL	by and cor	nplete this tal		· · ·		ation	•	3
						perties			
		Radiatio	n Symbo	ol Sizo	e	Charge	51	copped by	
		Alpha							
		Beta							
		Gamma							
4.	Giv	e two safe	ety precaution	s that shoul	d be follo	owed when w	worki	ng with	1
	rad	ioactive m	naterials.						
5.	a)		background Ra						1
	b)		ree main sour		-				1
	c)	IS Dackgr	ound radiatio	n mostly ma	in-made	or natural?			1
6.	Wh		does radiation	have on livi					1
0.	vvii				ing cens:				-
7.	Sm	oke alarm	s are made wi	th an alpha	source (A	Americium-2	41). F	Describe how a	2
			uses ionisatio	-					
				I	!	!			
8.	A ra	adioactive	tracer is a ga	mma emittir	ng chemi	cal compour	nd tha	t can be injected	2
	in t	o a patien	it in hospital. I	Describe how	w this car	n be useful ir	n diag	nosis of medical	
	pro	blems.							
9.		-						as radiotherapy.	2
			•			ed in this wa	y, and	how damage to	
	suri	rounding	healthy tissue	is minimised	d.				
10	The	following	aquinment c	an ha usad t	o detect	radiation (hoose	one piece of	2
10		-	nd describe ho				noose	e one piece of	2
	CYU	iipinent a				r. e, Scintillatio	n Cou	inter	
						.,			
								Total 20	<u>.</u>

Exercise 10: Activity

1	Copy and comp	lete this table				6
		<i>Activity</i> / Bq	Number of Decays	Time / s		
	(a)		720	60		
	(b)		4500	180		
	(c)	1000		100		
	(d)	12 500		500		
	(e)	40 000	3.0×10^7			
	(f)	2.5 x 10 ⁶	5.0 x 10 ⁸			
2.	What is meant	by the 'activity' c	of a source?			1
		,, .				
3.	What is meant	by the term 'radi	oactive decay'?			1
4.	What is the acti	ivity of a source t	hat has 210 decays in a r	ninute?		2
5.	A source has an	activity of 2000	Bq. How many decays wi	ill occur in 30	seconds?	2
6.		•	3q. How many counts will (and counter) in 1 minute		from the	2
7.	How long will it radioactive dec		th an activity of 1.8 MBq	to have 8.1 x	10 ⁸	
8.	Describe an exp following equip	ment:	the activity of a radioactiv		ng the	2
9.	tube is used to	measure the acti	activity is measured as 1. vity of a source in the lab led. What is the activity c	oratory. In th	nree	2
					Total 20	

Exercise 11: Half Life

1.	What happens to the activit	y of a s	ource a	is it get	s oldei	·?			1
2.	What is the meaning of this <i>"The half-l</i>			ctive so	urce is	12 hour	rs″		2
8.	A radioactive material has a kBq, what is the activity of t				it has	an origi	nal acti	ivity of	200 2
.	The activity of a radioactive years. What is the half life o			-	n 100 I	MBq to (6.25 MI	Bq in 12	2 2
•	A material with a half life of What was its activity 24 hou			n activii	ty of 1	5 Bq at t	his mo	ment.	2
	A patient in a hospital is bei kidneys. The tracer is prepa can't be safely given to the The half life of the tracer is on Saturday. When should t	red in a patient 6 hours	a labora until th s, and th	tory wi ne activ ne patie	th an i ity dro ent is d	nitial ac ps to 0.1	tivity o 25 kBq.	f 16 kB	q. It
•	Describe how a student cou a stopwatch, a							urce us	sing: 3
8.	In a science classroom, the a source at different times i Draw an activity-time graph	s recor	ded in t	his tabl	le.				
	Time / mins	0	5	10	15	20	25	30	35
	Activity Recorded / Bq	66	51	43	34	27	22	18	15
•	A radiotherapist in a hospita a radioactive tracer. The ma Which material should the r	iterials	and so	me of tl	neir pr	operties	are lis	ted.	
	Material	Radiat	ion Em	itted		Н	alf Life		
	Α		Alpha			4	hours		
	В	G	amma			3	hours		
	С		Beta			1() hours		
	D	G	amma			63	3 years		
	E		Alpha			5 r	minutes	5	
·									
								Total	20

Exercise 12: Absorbed Dose & Equivalent Dose

			le		1		4
		Absorbed	<i>Dose</i> / Gy	Energy/	J Mass	/ kg	
	(a)			6 x 10 ⁻⁶	0.	5	
	(b)			3.5 x 10 ⁻¹	5 0.2	25	
	(c)	8.8 x	x 10 ⁻⁵		0.0)5	
	(d)	6.5 x	× 10 ⁻⁵		0.2	26	
2. Wh	at is the me	eaning of the	term ' <i>absorb</i>	ed dose'?			1
3. Wh	at is the ab	sorbed dose	of a 400 g hai	nd that abso	orbs 7 IJ of a	alpha particles	;? 2
		ass of skin exp e is 10 μGy?	bosed to radi	ation with 4	.2 μJ of ener	rgy if the	2
	nour?						
	by and com	plete this tab	le				4
		plete this tabl ent Dose /Sv		Dose / Gy	Radiation V	Veighting Fac	
(a)	Equivale				Radiation V	Veighting Fac 1	4 tor
	Equivale		Absorbed L	10 ⁻⁶	Radiation V		
(a)	Equivale		Absorbed L	10 ⁻⁶	Radiation V	1	
(a)	Equivale	ent Dose /Sv	Absorbed L	10 ⁻⁶	Radiation V	1 3	
(a) (b) (c) (d)	Equivale)) 6.8) 4.5	ent Dose /Sv 3 x 10 ⁻⁵	Absorbed I 4.2 x 1.7 x 1.5 x	10 ⁻⁶ 10 ⁻⁵	Radiation V	1 3	tor
(a) (b) (c) (d) 7. Wh	Equivale) 6.8) 6.8) 4.5 at is the means	ent Dose /Sv 3×10^{-5} 5×10^{-5} eaning of the juivalent dose	Absorbed I 4.2 x 1.7 x 1.5 x term 'equiva	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁵		1 3 10	tor 1
(a) (b) (c) (d) 7. Wh 3. Wh slov	Equivale	ent Dose /Sv 3 x 10 ⁻⁵ 5 x 10 ⁻⁵ eaning of the juivalent dose ?	Absorbed L 4.2 x 1.7 x 1.5 x term 'equiva	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁵ <i>lent dose'</i> ? s tissue, if it	: is exposed	1 3 10	tor 1 2
(a) (b) (c) (d) 7. Wh 3. Wh slov	Equivale	ent Dose /Sv 3 x 10 ⁻⁵ 5 x 10 ⁻⁵ eaning of the juivalent dose ?	Absorbed L 4.2 x 1.7 x 1.5 x term 'equiva	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁵ <i>lent dose'</i> ? s tissue, if it	: is exposed	1 3 10 to 1.5 μGy of	tor 1 2 v of 2

Exercise 13: Nuclear Fission & Fusion

