## Vectors and Scalars Questions - NAT 5

1) Two forces act on an object, with the angle between the forces being $90^{\circ}$.


Calculate the resultant force acting on the object. (M + D's!!!!!!)
2) A student walks from $\mathbf{X}$ to $\mathbf{Y}$ and then from $\mathbf{Y}$ to $\mathbf{Z}$ in 2 hours.


Calculate or find the following from the students walk:
a) Total distance travelled in km
b) Average speed in $\mathrm{kmh}^{-1}$
c) Displacement (M + D’s!!!!!!) in km
d) Average velocity ( $\mathrm{M}+\mathrm{D}$ ’!!!!!!!) in $\mathrm{kmh}^{-1}$
3) A cross country runner travels 2.1 km due South followed by 1.5 km due West in a total time of 20 minutes.

Calculate or find the following from the cross country run:
a) Total distance travelled in $m$
b) Average speed in $\mathrm{ms}^{-1}$
c) Displacement in $m$
d) Average velocity in $\mathrm{ms}^{-1}$
4) Put the following quantities into the table below:

Velocity, distance, time, weight, speed, mass, displacement, force, power and acceleration.

| Scalars | Vectors |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |

5) During training an athlete sprints 30 m due East followed by 50 m due West.

Calculate or find the following from the sprints:
a) Distance travelled
b) Displacement
6) An aircraft is flying horizontally at a constant speed.


During the flight the aircraft's engines produce a force of $4.4 \times 10^{4} \mathrm{~N}$ due North. The aircraft encounters a crosswind blowing from West to East, which exerts a force of $3.2 \times 10^{4} \mathrm{~N}$.


Calculate the resultant force on the aircraft.
7) At an airport an aircraft moves from the terminal building to the end of the runway.


Calculate or find:
a) Total distance travelled by the aircraft
b) Displacement of the aircraft.
8) A student follows the route shown in the diagram and arrives back at the starting point.


Calculate or find:
a) The total distance travelled
b) Displacement.
9) Four tug boats apply forces to an oil rig in the directions shown below.


Calculate the magnitude and direction of the resultant force acting on the oil rig.
10) A barge is travelling, with a velocity of $2.0 \mathrm{~ms}^{-1}$ due West, along a canal. A girl runs, with a speed of $4.8 \mathrm{~ms}^{-1}$, from $X$ to $Y$ across the deck of the barge as shown below.


By drawing a scale drawing or otherwise, find the resultant velocity of the girl relative to someone at point $\mathbf{Z}$ on the bank of the canal.

